Java中的A A star 寻径实现

本文介绍了Dijkstra算法和A*算法的原理,并详细解析了A*算法的Java实现。A*算法通过估价函数f(n)=g(n)+h(n)来找到最短路径,比Dijkstra算法更高效。文中提供了Node类和PathFinder类的代码示例,展示了如何在Java中实现A*算法进行寻径。
摘要由CSDN通过智能技术生成
                据我个人所知,目前流行的寻径方法大体有两种,即A* 和Dijkstra(SP算法)

Dijkstra算法:

   
  
    由Edsger Wybe Dijkstra先生发明(已故)
    Dijkstra算法是典型的最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。Dijkstra算法是一种逐步搜索算法,通过为每个顶点n保留目前为止所找到的从m到n的最短路径来工作的。

    搜索过程:
   假如在第m步搜索到一个最短路径,而该路径上有n个距离源节点最近的节点,则将他们认为是一个节点集合N;在第m+1步,搜索不属于N的距离源节点最近的节点,并搜索到的节点加入到N中;继续搜索,直至到达目的节点,N中的节点集合便是从源节点到目的节点的最短路径。

    算法描述:

    Dijkstra算法是通过为每个顶点v保留目前为止所找到的从s到v的最短路径来工作的。初始时,源点s的路径长度值被赋为0(d[s]=0), 同时把所有其他顶点的路径长度设为无穷大,即表示我们不知道任何通向这些顶点的路径(对于V中所有顶点v除s外d[v]= ∞)。当算法结束时,d[v]中储存的便是从s到v的最短路径,或者如果路径不存在的话是无穷大。 Dijstra算法的基础操作是边的拓展:如果存在一条从u到v的边,那么从s到u的最短路径可以通过将边(u,v)添加到尾部来拓展一条从s到v的路径。这条路径的长度是d[u]+w(u,v)。如果这个值比目前已知的d[v]的值要小,我们可以用新值来替代当前d[v]中的值。拓展边的操作一直执行到所有的d[v]都代表从s到v最短路径的花费。这个算法经过组织因而当d[u]达到它最终的值的时候没条边(u,v)都只被拓展一次。算法维护两个顶点集S和Q。集合S保留了我们已知的所有d[v]的值已经是最短路径的值顶点,而集合Q则保留其他所有顶点。集合S 初始状态为空,而后每一步都有一个顶点从Q移动到S。这个被选择的顶点是Q中拥有最小的d[u]值的顶点。当一个顶点u从Q中转移到了S中,算法对每条外接边(u,v)进行拓展。

A*(A Star)算法:

  

    A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。
    公式表示为:f(n)=g(n)+h(n), 其中f(n) 是节点n从初始点到目标点的估价函数,g(n) 是在状态空间中从初始节点到n节点的实际代价,h(n)是从n到目标节点最佳路径的估计代价。

     搜索过程:
    
     创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。遍历当前节点的各个节点,将n节点放入CLOSE中,取n节点的子节点X,->算X的估价值.

        While(OPEN!=NULL)
        {
        从OPEN表中取估价值f最小的节点n;
        if(n节点==目标节点) break;
        else
        {
        if(X in OPEN) 比较两个X的估价值f //注意是同一个节点的两个不同路径的估价值
        if( X的估价值小于OPEN表的估价值 )
           更新OPEN表中的估价值; //取最小路径的估价值
        if(X in CLOSE) 比较两个X的估价值 //注意是同一个节点的两个不同路径的估价值
        if( X的估价值小于CLOSE表的估价值 )
           更新CLOSE表中的估价值; 把X节点放入OPEN //取最小路径的估价值
        if(X not in both)
        求X的估价值;
           并将X插入OPEN表中; //还没有排序
        }
        将n节点插入CLOSE表中;
        按照估价值将OPEN表中的节点排序; //实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。
        }


就实际应用而言,A*算法和Dijistra算法的最大区别就在于有无估价值,本质上Dijistra算法相当于A*算法中估价值为0的情况。所以此次我选取A*算法进行Java实现。

抛开理论性的数学概念,通常的A*算法,其实只有两个步骤,一是路径评估,以保证移动的下一个位置离目标最近,评估的结果越精确则寻径的效率也将越高。二是路径查询,也即将评估结果进行反应,而后从新位置再次进行评估指导无路可走为止,以此遍历出可行的路径。

在A*算法的程序实现中,本质上我们只需要关心三点,即起点、终点和地图信息,有了这三项基本数据,我们就可以构建任何情况下的A*实现。

下面我现在提供的是一个A*的Java静态寻径算法实现,逻辑见代码注释。

 运行效果如下图(1,1 to 10,13):


(1,1 to 7,9 小房子门口中间)


(1,1 to 6,7 小房子内部)



Node.java
package  org.test.astar;

import  java.awt.Point;
import  java.util.LinkedList;

/** */ /**
 * <p>
 * Title: LoonFramework
 * </p>
 * <p>
 * Description:描述路径节点用类
 * </p>
 * <p>
 * Copyright: Copyright (c) 2008
 * </p>
 * <p>
 * Company: LoonFramework
 * </p>
 * <p>
 * License: http://www.apache.org/licenses/LICENSE-2.0
 * </p>
 * 
 * @author chenpeng
 * @email:ceponline@yahoo.com.cn
 * @version 0.1
 */

public   class  Node  implements  Comparable  ... {
    // 坐标
    public Point _pos;

    // 开始地点数值
    public int _costFromStart;

    // 目标地点数值
    public int _costToObject;

    // 父节点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值