Papers Notes_6_ DCGAN--Unsupervised Representation Learning with Deep Convolutional GAN

Papers Notes_6_ DCGAN--Unsupervised Representation Learning with Deep Convolutional GAN

Approach

scale up GANs using CNNs to model images

  1. the all convolutional net
    replace deterministic spatial pooling functions (such as maxpooling) with strided convolutions
    →allow the network to learn its own spatial downsampling
    use in generator and discriminator
  2. eliminate fully connected layer
    for the generator
    the uniform noise distribution Z →reshape to 4-dimensional tensor
    for the discriminator
    the last convolutional layer is flatten→a single sigmoid output
  3. the Batch Normalization
    stabilize learning by normalizing the input to each unit to have zero mean and unit variance
    helps deal with the training problems that arise due to poor initialization and helps gradient flow in deeper models
    critical to get deep generators to begin learning, preventing the generator from collapsing all examples to a single point which is a common failure mod observed in GANs
    apply BN to all layers→sample oscillation and model instability
    avioded by not applying to the generator output or the discriminator input layer
  4. ReLU and LeakyReLU activation
    ReLU activation is used in the generator except the output layer which uses the Tanh function
    →learn more quickly to saturate and cover the color space of the training distribution
    within the discriminator, leaky rectified activation work well, especially for higher resolution modeling
    在这里插入图片描述

Architecture

在这里插入图片描述
no pre-processing besides scaling to the range of the tanh function of [-1, 1]
trained with mini-batch stochastic gradient descent with a mini-batch size 128
all weights were initialized from a zero-centered Nomal distribution with standard deviation 0.02
Leaky ReLU, the slope of leak is 0.2
use Adam optimizer
learning rate: 0.0002, (suggested value is 0.001, too high)
momentum term β 1 \beta_1 β1: 0.5, (suggested value is 0.9, result in training oscillation and instability)

References

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值