C. Star sky
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
The Cartesian coordinate system is set in the sky. There you can see n stars, the i-th has coordinates (xi, yi), a maximum brightness c, equal for all stars, and an initial brightness si (0 ≤ si ≤ c).
Over time the stars twinkle. At moment 0 the i-th star has brightness si. Let at moment t some star has brightness x. Then at moment (t + 1) this star will have brightness x + 1, if x + 1 ≤ c, and 0, otherwise.
You want to look at the sky q times. In the i-th time you will look at the moment ti and you will see a rectangle with sides parallel to the coordinate axes, the lower left corner has coordinates (x1i, y1i) and the upper right — (x2i, y2i). For each view, you want to know the total brightness of the stars lying in the viewed rectangle.
A star lies in a rectangle if it lies on its border or lies strictly inside it.
Input
The first line contains three integers n, q, c (1 ≤ n, q ≤ 105, 1 ≤ c ≤ 10) — the number of the stars, the number of the views and the maximum brightness of the stars.
The next n lines contain the stars description. The i-th from these lines contains three integers xi, yi, si (1 ≤ xi, yi ≤ 100, 0 ≤ si ≤ c ≤ 10) — the coordinates of i-th star and its initial brightness.
The next q lines contain the views description. The i-th from these lines contains five integers ti, x1i, y1i, x2i, y2i (0 ≤ ti ≤ 109, 1 ≤ x1i < x2i ≤ 100, 1 ≤ y1i < y2i ≤ 100) — the moment of the i-th view and the coordinates of the viewed rectangle.
Output
For each view print the total brightness of the viewed stars.
二维数组前缀和预处理的问题,注意边界。
#include<iostream>
using namespace std;
const int maxn=105;
int dp[maxn][maxn][15];
int main()
{
int n,q,c;
cin >> n >> q >> c;
int x,y,s;
for(int i=1;i<=n;i++)
{
cin >> x >> y >> s;
dp[x][y][s]++;
}
for(int i=1;i<105;i++)
for(int j=1;j<105;j++)
for(int k=0;k<15;k++)
{
dp[i][j][k]+=dp[i-1][j][k]+dp[i][j-1][k]-dp[i-1][j-1][k];
}
int t,x1,y1,x2,y2;
int sum;
while(q--)
{
sum=0;
cin >> t >> x1 >> y1 >> x2>> y2;
for(int k=0;k<=c;k++)
{
int step=(k+t)%(c+1);
sum+=step*(dp[x2][y2][k]+dp[x1-1][y1-1][k]-dp[x2][y1-1][k]-dp[x1-1][y2][k]);
}
cout << sum <<endl;
}
return 0;
}