较高人工智能的人机博弈程序实现(多个算法结合)含C++源码
本文由恋花蝶最初发表于http://blog.csdn.net/lanphaday上,您可以转载、引用、打印和分发等,但必须保留本文完整和包含本声明,否则必究责任。
到昨天晚上,Topcoder Marathon Match 6结束了,我取得了第18名的成绩,已经是自己参加Marathon四次以来的最好名次啦,高兴ing。因为这次的题目比较偏:写一个人工智能程序和服务器端的程序进行博弈。人机博弈是一门比较专的学科,大部分中国高手都不能快速的在比赛中学习和实现一些复杂的算法,以致成绩不太如意;我挟之前对这方面的了解,做得还算行,所以把代码公开出来,可以多一点中文方面的资料和源码给大家参考,我也感到非常荣幸。
比赛的题目请看这里:http://www.topcoder.com/longcontest/?module=ViewProblemStatement&rd=10118&pm=6759 主要的游戏规则也是在这里的,我就不在这里重复啦,主要讲讲我的代码用到了什么算法。麻将虽小,五脏俱全,主要应用的算法有主要变量搜索(PVS)、历史启发(HH)、杀手启发(KH)、Null Move和迭代深化(ID),可惜后来不够时间实现置换表(TT),不然可以多一个算法了。代码里还实现了时间控制策略,可以几乎用尽20秒的测试时间,为争取更好的着法提供了保证。还有值得一提的是棋盘表示,我使用了棋盘表、棋子位置表结合的方式来表示,后来发现加上空位表的话,可以加快不少走法生成和估值的速度。反正棋盘表示是一切的基础,一种好的表示方法可以带来很大的性能提升。对于代码,大家注意class SE里的search_move和pvs两个函数,上述的算法和策略都在那里。class MG是关于棋盘表示、走法生成和估值的,class KH和class HH分别是杀手启发和历史启发。Null Move是简单有效的算法,不过我的实现里是比较简单的那种,如果有兴趣,可以查询其它资料。
讲了这么多,应该说一下这份代码的计算能力:以6*6的棋盘为例,这份代码在VC6的release模式下编译运行可以在1秒内搜索并评估83万个叶子节点,计算层次在8-9层;如果用MiniMax算法不进行剪枝,只能搜索到3-4层(测试机器皆为超线程P4 3.0G+1G内存)。这就是算法的力量吧。另声明一下,本代码未作优化,不代表我不懂,只是没有时间,看的朋友请海涵了。
下面是代码,在VC和G++上皆可编译、执行
因为比赛期间写的,代码比较乱,但整体的风格还是可以的,复制到IDE上看可能会更好看些
#include < cstdlib >
#include < ctime >
#include < cassert >
#include < vector >
#include < algorithm >
using namespace std;
typedef unsigned int UINT;
typedef UINT MOVE;
const int INFINITY = 100000000 ;
const int MAX_DEPTH = 16 ;
const UINT max_board_size = 256 ;
const UINT max_stones_cnt = 256 ;
const UINT empty = 0 ;
const UINT my_color = 1 ;
const UINT svr_color = 2 ;
#ifdef WIN32
const clock_t all_time = 19200 ;
#else
const clock_t all_time = 19200000 ;
#endif
const UINT check_time_cnt = 0x00001fff ;
#define is_empty(x) (x==empty)
#define opp_color(x) (x==my_color?svr_color:my_color)
int leaf_cnt = 0 ;
class MG
... {
private:
UINT N_;
UINT board_[max_board_size];