刘二大人 PyTorch深度学习实践 笔记 P11 卷积神经网络(高级篇)

1、GoogleNet

I 网络结构

神经网络当中还有许多更为复杂的网络结构,那么它们如何来实现?用什么样的方法?GoogleNet网络结构如图所示:

在这里插入图片描述

GoogleNet常被用作基础主干网络,图中红色圈出的一个部分称为Inception块。

II 减少代码冗余思想(减少代码重复)

  1. 在c语言中 使用函数
  2. 面向对象过程中时 构造类
    在GoogleNet中把相同的块封装成一个类来减少代码冗余。

2、Inception Module

I 基本概念

问题: 构造神经网络时,超参数比较难选,比如kernel。
解决办法: 把几种卷积都用一下,效果更好的卷积被赋予的权重会更大,自动找到最优卷积的组合,针对每一个卷积结果再进行求和。

在这里插入图片描述

  • concarenate: 把张量拼接起来,必须保证图像的宽度和高度是一致的。
  • 均值池化: 最大池化会导致图像变为原来的一半,均值池化可以人为指定padding 和 stride 来保证输入和输出的图像是一样的。
  • 信息融合: 本质就是得到的值通过三个值通过某种运算得到的信息。考试对各科分数求总分进行比较分数高低,在多个维度下不太好比较。
  • 1*1卷积: 也是相同大小的卷积核,其个数取决于输入张量的通道,最主要目的就是改变通道的数量,减少运算量。

此处就是在做一个通道的变换,原通道数为3,新的通道数是卷积核的个数,高度和宽度不变。

在这里插入图片描述

运算量变成了原来的十分之一,大大提高了计算效率。

在这里插入图片描述

III 代码实现

在这里插入图片描述
在这里插入图片描述

import torch
from torch import nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt


# 1、准备数据集
batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))
])

train_dataset = datasets.MNIST(root='dataset/mnist',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(dataset=train_dataset,
                          batch_size=batch_size,
                          shuffle=True)

test_dataset = datasets.MNIST(root='dataset/mnist',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(dataset=test_dataset,
                         batch_size=batch_size,
                         shuffle=False)


# 2、建立模型
# 定义一个Inception类,在网络里会用到
class InceptionA(nn.Module):
    def __init__(self, in_channels):
        super(InceptionA, self).__init__()
        self.branch1X1 = nn.Conv2d(in_channels, 16, kernel_size=1)

        # 设置padding保证各个分支输出的高度和宽度保持不变
        self.branch5X5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5X5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)

        self.branch3X3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch3X3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3X3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)

        self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)

    def forward(self, x):
        branch1X1 = self.branch1X1(x)

        branch5X5 = self.branch5X5_1(x)
        branch5X5 = self.branch5X5_2(branch5X5)

        branch3X3 = self.branch3X3_1(x)
        branch3X3 = self.branch3X3_2(branch3X3)
        branch3X3 = self.branch3X3_3(branch3X3)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1X1, branch5X5, branch3X3, branch_pool]
        # (b, c, w, h),dim=1——以第一个维度channel来拼接
        return torch.cat(outputs, dim=1)

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        # 88 = 24*3 + 16
        self.conv2 = nn.Conv2d(88, 20, kernel_size=5)

        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)

        self.mp = nn.MaxPool2d(2)
        # 确定输出张量的尺寸
        # 在定义时先不定义fc层,随便选取一个输入,经过模型后查看其尺寸
        # 在init函数中把fc层去掉,forward函数中把最后两行去掉,确定输出的尺寸后再定义Lear层的大小
        self.fc = nn.Linear(1408, 10)

    def forward(self, x):
        in_size = x.size(0)
        # 1 ==》 10
        x = F.relu(self.mp(self.conv1(x)))
        # 10 ==》 88
        x = self.incep1(x)
        # 88 ==》 20
        x = F.relu(self.mp(self.conv2(x)))
        # 20 ==》 88
        x = self.incep2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x


model = Net()
# 将模型迁移到GPU上运行,cuda:0表示第0块显卡
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# print(torch.cuda.is_available())
model.to(device)

# 3、建立损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)


# 4、定义训练函数
def train(epoch):
    running_loss = 0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        # 将要计算的张量也迁移到GPU上——输入和输出
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()

        # 前馈 反馈 更新
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0


# 5、定义测试函数
accuracy = []
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            # 测试中的张量也迁移到GPU上
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            # 两个张量比较,得出的是其中相等的元素的个数(即一个批次中预测正确的个数)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test  set: %d %%' % (100 * correct / total))
    accuracy.append(100 * correct / total)


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
    print(accuracy)
    plt.plot(range(10), accuracy)
    plt.xlabel("epoch")
    plt.ylabel("Accuracy")
    plt.show()

输出:

[1,   300] loss: 0.767
[1,   600] loss: 0.186
[1,   900] loss: 0.141
Accuracy on test  set: 96 %
[2,   300] loss: 0.109
[2,   600] loss: 0.098
[2,   900] loss: 0.096
Accuracy on test  set: 97 %
[3,   300] loss: 0.083
[3,   600] loss: 0.076
[3,   900] loss: 0.076
Accuracy on test  set: 97 %
[4,   300] loss: 0.066
[4,   600] loss: 0.066
[4,   900] loss: 0.064
Accuracy on test  set: 98 %
[5,   300] loss: 0.054
[5,   600] loss: 0.057
[5,   900] loss: 0.054
Accuracy on test  set: 98 %
[6,   300] loss: 0.049
[6,   600] loss: 0.052
[6,   900] loss: 0.049
Accuracy on test  set: 98 %
[7,   300] loss: 0.044
[7,   600] loss: 0.047
[7,   900] loss: 0.042
Accuracy on test  set: 98 %
[8,   300] loss: 0.043
[8,   600] loss: 0.039
[8,   900] loss: 0.041
Accuracy on test  set: 98 %
[9,   300] loss: 0.034
[9,   600] loss: 0.041
[9,   900] loss: 0.038
Accuracy on test  set: 98 %
[10,   300] loss: 0.034
[10,   600] loss: 0.035
[10,   900] loss: 0.033
Accuracy on test  set: 98 %
[96.51, 97.37, 97.94, 98.45, 98.31, 98.58, 98.59, 98.8, 98.73, 98.9]

在这里插入图片描述

性能提高不多,可能是最好全连接层太少,训练次数不一定越多越好,当前网络参数可以进行存盘,存储训练效果最好的结果。

II Stack Layer

问题: 为什么网络层数更深反而准确率会下降,训练效果更差?
在这里插入图片描述
梯度消失: 在反向传播时需要根据链式法则把一连串的梯度乘起来,若每个梯度都小于1,则乘起来的结果会接近于0,导致权重在更新时得不到什么更新,进而导致最开始的这些块(离输入近的块)没办法得到充分的训练。
解决办法: 逐层训练,每一层加锁,但是深度学习中层数太多了,难以实现。

3、residual net

I 普通网络与残差网络的区别

残差网络多一个跳连接,在做完卷积激活之前,将该层的输入加上输出一起作为整个的输出来激活。
在这里插入图片描述

II Residual block

偏导数+1一定大于等于1,所以不会出现梯度消失的问题。

在这里插入图片描述

在这里插入图片描述

III 代码实现

import torch
from torch import nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt


# 1、准备数据集
batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))
])

train_dataset = datasets.MNIST(root='dataset/mnist',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(dataset=train_dataset,
                          batch_size=batch_size,
                          shuffle=True)

test_dataset = datasets.MNIST(root='dataset/mnist',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(dataset=test_dataset,
                         batch_size=batch_size,
                         shuffle=False)


# 2、建立模型
# 定义一个ResidualBlock类,在网络里会用到
class ResidualBlock(nn.Module):
    def __init__(self, channels):
        super(ResidualBlock, self).__init__()
        self.channels = channels
        self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)

    def forward(self, x):
        y = F.relu(self.conv1(x))
        y = self.conv2(y)
        return F.relu(x + y)

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1,16, kernel_size=5)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=5)
        self.mp = nn.MaxPool2d(2)

        self.rblock1 = ResidualBlock(16)
        self.rblock2 = ResidualBlock(32)

        self.fc = nn.Linear(512, 10)

    def forward(self, x):
        in_size = x.size(0)
        x = self.mp(F.relu(self.conv1(x)))
        x = self.rblock1(x)
        x = self.mp(F.relu(self.conv2(x)))
        x = self.rblock2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x


model = Net()
# 将模型迁移到GPU上运行,cuda:0表示第0块显卡
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# print(torch.cuda.is_available())
model.to(device)

# 3、建立损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)


# 4、定义训练函数
def train(epoch):
    running_loss = 0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        # 将要计算的张量也迁移到GPU上——输入和输出
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()

        # 前馈 反馈 更新
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0


# 5、定义测试函数
accuracy = []
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            # 测试中的张量也迁移到GPU上
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            # 两个张量比较,得出的是其中相等的元素的个数(即一个批次中预测正确的个数)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test  set: %d %%' % (100 * correct / total))
    accuracy.append(100 * correct / total)


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
    print(accuracy)
    plt.plot(range(10), accuracy)
    plt.xlabel("epoch")
    plt.ylabel("Accuracy")
    plt.show()

输出:

[1,   300] loss: 0.520
[1,   600] loss: 0.159
[1,   900] loss: 0.118
Accuracy on test  set: 97 %
[2,   300] loss: 0.090
[2,   600] loss: 0.081
[2,   900] loss: 0.074
Accuracy on test  set: 98 %
[3,   300] loss: 0.063
[3,   600] loss: 0.058
[3,   900] loss: 0.055
Accuracy on test  set: 98 %
[4,   300] loss: 0.046
[4,   600] loss: 0.050
[4,   900] loss: 0.048
Accuracy on test  set: 98 %
[5,   300] loss: 0.044
[5,   600] loss: 0.038
[5,   900] loss: 0.038
Accuracy on test  set: 98 %
[6,   300] loss: 0.035
[6,   600] loss: 0.033
[6,   900] loss: 0.034
Accuracy on test  set: 98 %
[7,   300] loss: 0.028
[7,   600] loss: 0.029
[7,   900] loss: 0.032
Accuracy on test  set: 98 %
[8,   300] loss: 0.027
[8,   600] loss: 0.028
[8,   900] loss: 0.026
Accuracy on test  set: 98 %
[9,   300] loss: 0.021
[9,   600] loss: 0.026
[9,   900] loss: 0.022
Accuracy on test  set: 98 %
[10,   300] loss: 0.021
[10,   600] loss: 0.023
[10,   900] loss: 0.021
Accuracy on test  set: 98 %
[97.03, 98.21, 98.47, 98.8, 98.52, 98.88, 98.88, 98.98, 98.95, 98.98]

在这里插入图片描述

4、作业

作业1:阅读论文 Identity Mappings in Deep Residual Networks

给出了很多residual block实现的方式。

在这里插入图片描述

实现 constant scaling

返回结果为原来的一半

class ResidualBlock(nn.Module):
    def __init__(self, channels):
        super(ResidualBlock, self).__init__()
        self.channels = channels
        self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)

    def forward(self, x):
        y = F.relu(self.conv1(x))
        y = self.conv2(x)
        z = 0.5 * (x + y)
        return F.relu(z)

输出:

[1,   300] loss: 0.947
[1,   600] loss: 0.252
[1,   900] loss: 0.173
Accuracy on test  set: 96 %
[2,   300] loss: 0.126
[2,   600] loss: 0.113
[2,   900] loss: 0.107
Accuracy on test  set: 97 %
[3,   300] loss: 0.085
[3,   600] loss: 0.084
[3,   900] loss: 0.077
Accuracy on test  set: 98 %
[4,   300] loss: 0.064
[4,   600] loss: 0.066
[4,   900] loss: 0.068
Accuracy on test  set: 98 %
[5,   300] loss: 0.057
[5,   600] loss: 0.058
[5,   900] loss: 0.055
Accuracy on test  set: 98 %
[6,   300] loss: 0.051
[6,   600] loss: 0.051
[6,   900] loss: 0.047
Accuracy on test  set: 98 %
[7,   300] loss: 0.042
[7,   600] loss: 0.044
[7,   900] loss: 0.048
Accuracy on test  set: 98 %
[8,   300] loss: 0.041
[8,   600] loss: 0.040
[8,   900] loss: 0.040
Accuracy on test  set: 98 %
[9,   300] loss: 0.035
[9,   600] loss: 0.037
[9,   900] loss: 0.037
Accuracy on test  set: 98 %
[10,   300] loss: 0.031
[10,   600] loss: 0.038
[10,   900] loss: 0.031
Accuracy on test  set: 98 %
[96.09, 97.78, 98.07, 98.29, 98.41, 98.67, 98.03, 98.86, 98.75, 98.81]

在这里插入图片描述

实现conv shortcut

多进行一次卷积

class ResidualBlock(nn.Module):
    def __init__(self, channels):
        super(ResidualBlock, self).__init__()
        self.channels = channels
 
        self.conv1 = nn.Conv2d(channels, channels,
                               kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(channels, channels,
                               kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(channels, channels,
                               kernel_size=1)
 
    def forward(self, x):
        y = F.relu(self.conv1(x))
        y = self.conv2(x)
        z = self.conv3(x) + y
        return F.relu(z)

输出:

[1,   300] loss: 0.686
[1,   600] loss: 0.192
[1,   900] loss: 0.137
Accuracy on test  set: 96 %
[2,   300] loss: 0.105
[2,   600] loss: 0.093
[2,   900] loss: 0.078
Accuracy on test  set: 98 %
[3,   300] loss: 0.073
[3,   600] loss: 0.065
[3,   900] loss: 0.060
Accuracy on test  set: 98 %
[4,   300] loss: 0.054
[4,   600] loss: 0.049
[4,   900] loss: 0.056
Accuracy on test  set: 98 %
[5,   300] loss: 0.042
[5,   600] loss: 0.048
[5,   900] loss: 0.040
Accuracy on test  set: 98 %
[6,   300] loss: 0.041
[6,   600] loss: 0.039
[6,   900] loss: 0.037
Accuracy on test  set: 98 %
[7,   300] loss: 0.034
[7,   600] loss: 0.033
[7,   900] loss: 0.035
Accuracy on test  set: 98 %
[8,   300] loss: 0.029
[8,   600] loss: 0.030
[8,   900] loss: 0.031
Accuracy on test  set: 98 %
[9,   300] loss: 0.025
[9,   600] loss: 0.027
[9,   900] loss: 0.028
Accuracy on test  set: 98 %
[10,   300] loss: 0.023
[10,   600] loss: 0.026
[10,   900] loss: 0.026
Accuracy on test  set: 98 %
[96.42, 98.2, 98.48, 98.7, 98.9, 98.89, 98.92, 98.99, 98.68, 98.97]

在这里插入图片描述

作业2:阅读论文 Densely Connected Convolutional Networks
在这里插入图片描述
怎么实现?

5、建议学习流程

在这里插入图片描述

  1. 理解网络模型理论 看花书 《动手学深度学习》。
  2. 阅读pytorch文档(至少通读一遍),知道提供了什么功能以及文档结构。
  3. 复现经典工作,不是跑通代码,是先去读代码,学习架构;然后尝试自己来写,如此往复。
  4. 选特定研究领域,融会贯通,扩充视野,广泛阅读(前提是拥有前面的能力,看到论文,可以反映出代码怎么写,需要慢慢地积累)。
  • 10
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白*进阶ing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值