通俗易懂的说清楚 决策实验室分析(DEMATEL)方法的原理,过程、并案例实践

1.基本介绍

决策实验室分析法(Decision-Making Trial And Evaluation Laboratory,简称DEMATEL),是一种运用图论矩阵工具解释问题的系统分析方法最早是由巴特尔纪念研究所日内瓦研究中心开发,通过矩阵或有向图来可视化复杂因果关系的结构

所以原始数据就需要是一个矩阵数据

作为一种结构建模方法,它在分析系统各组成部分之间的因果关系时尤为有用。决策试行与评价实验室分析法可以确认因素之间的相互依存关系,并通过绘制一张有向图,来反映它们之间的相对关系,并可用于调查和解决复杂和相互交织的问题。该方法不仅通过矩阵将相互依赖关系转化为因果组,而且借助影响关系图发现复杂结构系统的关键因素

其通过系统中各要素之间的逻辑关系和直接影响矩阵,可以计算出每个要素对其它要素的影响度以及被影响度,从而计算出每个要素的原因度与中心度,作为构造模型的依据,从而确定要素间的因果关系和每个要素在系统中的地位。

各种要素差不多15-20之间就合适,不宜太多。因为要用专家打分的方法获得影响因素矩阵。所以,如果因素太多,那么这个关系矩阵就会太大。

2.计算过程

2.1专家打分-构建直接影响矩阵

首先,你要自己先确定影响因素,找到不同的影响因素。

下面就是5个影响因素,A指向B就是A对B产生了10的影响程度;B指向C就是B对C产生了10程度影响。

在这里插入图片描述

数字0代表没有影响(右下三角斜对角线一定为0,因为自己不会影响自己),其它数字代表影响强度,比如“要素A”对于“要素B”的影响强度为10。

A对B的影响程度,这是一个有方向的图。注意,这个方法和层次分析法不一样。比如:A对B造成的影响是10,B对A的影响可以是20。(而不是1/10)所以打分的时候,需要构建整个完整的矩阵表,而不是半个。

有了因素之间的影响关系,就可以构建直接影响矩阵(就是专家打分的结果矩阵)*
W = [ w 11 w 12 ⋯ w 1 ( j − 1 ) w 1 j w 21 w 22 ⋯ w 2 ( j − 1 ) w 2 j ⋮ ⋮ ⋱ ⋮ ⋮ w ( i − 1 ) 1 w ( i − 1 ) 2 ⋯ w ( i − 1 ) ( j − 1 ) w ( i − 1 ) j w i 1 w i 2 ⋯ w i ( j − 1 ) w i j ] W = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1(j-1)} & w_{1j} \\ w_{21} & w_{22} & \cdots & w_{2(j-1)} & w_{2j} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ w_{(i-1)1} & w_{(i-1)2} & \cdots & w_{(i-1)(j-1)} & w_{(i-1)j} \\ w_{i1} & w_{i2} & \cdots & w_{i(j-1)} & w_{ij} \end{bmatrix} W= w11w21w(i1)1wi1w12w22w(i1)2wi2w1(j1)w2(j1)w(i1)(j1)wi(j1)w1jw2jw(i1)jwij

2.2 直接影响矩阵规范化(行和最大值法)

对直接影响矩阵进行规范化。首先,对直接影响矩阵的每一行元素进行求和。然后,选取所有行的求和值中的最大值作为正规化值得分母。最后,将直接影响矩阵中每个元素除以行最大值,得到规范化后的直接影响矩阵中的元素。

在这里插入图片描述

2.3构建综合影响矩阵T

首先,计算单位矩阵与规范化的直接影响矩阵之间的差值。然后,计算差值矩阵的逆矩阵。最后,用规范化的直接影响矩阵乘以逆矩阵即可得到综合影响矩阵。

不用管前面的极限,就算最后一个等式就可以,简单迅速。

在这里插入图片描述
其中单位矩阵I就是主对角线为1,其他都为0的矩阵

2.4 计算影响度、被影响度、中心度和原因度

影响度指矩阵 ( T ) 中各行值和,表示各行要素对其他所有要素的综合影响值,有:

D i = ∑ j = 1 n T i j , ( i = 1 , 2 , … , n ) ( 4 ) D_i = \sum_{j=1}^n T_{ij}, \quad (i=1,2,\ldots,n) \quad (4) Di=j=1nTij,(i=1,2,,n)(4)

被影响度指矩阵 ( T ) 中各列值和,表示各列要素对其他所有要素的综合影响值,有:

E i = ∑ j = 1 n T j i , ( i = 1 , 2 , … , n ) ( 5 ) E_i = \sum_{j=1}^n T_{ji}, \quad (i=1,2,\ldots,n) \quad (5) Ei=j=1nTji,(i=1,2,,n)(5)

中心度表示因素在评价体系中的位置及其所起作用的大小,某要素的中心度为其影响度与被影响度之和,有:

B i = D i + C i ( 6 ) B_i = D_i + C_i \quad (6) Bi=Di+Ci(6)

原因度由某要素的影响度和被影响度相减得到,有:

C i = D i − E i ( 7 ) C_i = D_i - E_i \quad (7) Ci=DiEi(7)

下面和上面一样的,但是看起来更容易懂一点。
在这里插入图片描述

注意:

原因度为因果要素的判断指标,原因度大于0,该因素为原因要素;原因度小于0,该因素为结果要素。

中心度的值越大,表明该因素在因素体系中的位置及所起的作用也就越大。

3.范例

3.1 步骤一 直接影响矩阵

本研究基于文献梳理和案例分析确定了20个影响桥梁工程施工的因素,分别编号为A1、A2、A3、……、A19、A20,现通过问卷调查给这20个因素间的相互影响程度进行了打分,如下表所示,请运用DEMATEL方法确定因素间的因果关系。

步骤一:就是拿到直接影响矩阵,其中直接影响矩阵的范围没有要求,可以是1-5,1-100;或者1-100都可以。可以是小数或者整数。
在这里插入图片描述

3.2 步骤二 矩阵规范化A

(1)直接影响矩阵规范化:每一行求和,确定最大值。

可以发现最大值就是58.025,所以就可以将其作为分母进行规范化。

这里的实现就类似于标准化中的规一话的思想。

在这里插入图片描述
(2)直接影响矩阵中对应元素/行求和最大值
将矩阵中的每一个数值都除以上面求得的最大值58.025

例如[A1,A2] =3.665/58.025 = 0.063162429987(保留3位数或者几位都可以)

在这里插入图片描述

3.3 步骤三 综合影响矩阵T

(一)先自己构建一个和上面直接影响矩阵同等维度的单位矩阵I
在这里插入图片描述
(二)单位矩阵I—规范化直接影响矩阵 A

这里是将单位矩阵减去规范化直接影响矩阵 在这里插入图片描述(三) 求出逆矩阵(I - A)^-1

在这里插入图片描述
(四) 规范化直接影响矩阵A X(单位矩阵-规范化直接影响矩阵A)^-1

综合影响矩阵T = 规范化直接影响矩阵A X(单位矩阵-规范化直接影响矩阵A)^-1

在这里插入图片描述

步骤四:计算影响度、被影响度、中心度和原因度

接下来就是计算影响度、被影响度、中心度和原因度

那么以A1为例子,我们计算一下A1的影响度、被影响度、中心度和原因度,其他的因素也是一样的计算过程。

影响度就是A1影响其他元素的影响程度,那么就是A1的对应行的值相加,注意也要加上自己对自己的影响。

被影响度就是A1被其他影响元素的的影响程度,那么就是A1的对应列的值相加,注意也要加上自己对自己的影响。

在这里插入图片描述

那么我们计算出来了影响度和被影响度,就可以根据下面计算出中心度和原因度了

在这里插入图片描述

就可以计算出所有因素的影响度和被影响度。其中原因度大于0就是原因因素,原因度小于0就是结果因素,

在这里插入图片描述

综上所述,我们可以得出如下结论:

原因因素包括: A1、A8、A11、A13、A14、A17;
结果因素包括: A2、A3、A4、A5、A6、A7、A9、A10、A15、A16、A18、A19、A20

3.4 因果关系图绘图可视化

那么有很多的论文里面为了清晰的表示出各种因素直接的关系,经常用可视化的形式

我们就可以用坐标轴的形式绘制因果图

将中心度M为横坐标,将原因度作为纵坐标,绘制因果关系图。该图可以直观体现因果关系(示例)。

在这里插入图片描述
其中,第1类为强原因因子集(第Ⅰ区),这类因子对研究对象的形成具有非常显著的影响,且对其他结果型因子有较大的影响;

第2类为弱原因因子集(第Ⅱ区),这类因子对研究对象的形成也具有重要影响,对其他结果型因子也有一定的影响;

第3类为弱结果因子集(第Ⅲ区),这类因子是其他原因型因子综合作用的结果,对研究对象的形成具有一定的影响;

第4类为强结果因子集(第Ⅳ区),这类因子也是其他原因型因子综合作用的结果,但是对研究对象的形成具有非常重要的影响。

DEMATEL计算所得因子中心度越大,其影响程度也就越大,因此,需要重点关注第Ⅰ区的强原因因子集及第Ⅳ区的强结果因子集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

驭风少年君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值