1.基本介绍
决策实验室分析法(Decision-Making Trial And Evaluation Laboratory,简称DEMATEL),是一种运用图论和矩阵工具解释问题的系统分析方法。最早是由巴特尔纪念研究所日内瓦研究中心开发,通过矩阵或有向图来可视化复杂因果关系的结构。
所以原始数据就需要是一个矩阵数据
作为一种结构建模方法,它在分析系统各组成部分之间的因果关系时尤为有用。决策试行与评价实验室分析法可以确认因素之间的相互依存关系,并通过绘制一张有向图,来反映它们之间的相对关系,并可用于调查和解决复杂和相互交织的问题。该方法不仅通过矩阵将相互依赖关系转化为因果组,而且借助影响关系图发现复杂结构系统的关键因素。
其通过系统中各要素之间的逻辑关系和直接影响矩阵,可以计算出每个要素对其它要素的影响度以及被影响度,从而计算出每个要素的原因度与中心度,作为构造模型的依据,从而确定要素间的因果关系和每个要素在系统中的地位。
各种要素差不多15-20之间就合适,不宜太多。因为要用专家打分的方法获得影响因素矩阵。所以,如果因素太多,那么这个关系矩阵就会太大。
2.计算过程
2.1专家打分-构建直接影响矩阵
首先,你要自己先确定影响因素,找到不同的影响因素。
下面就是5个影响因素,A指向B就是A对B产生了10的影响程度;B指向C就是B对C产生了10程度影响。
数字0代表没有影响(右下三角斜对角线一定为0,因为自己不会影响自己),其它数字代表影响强度,比如“要素A”对于“要素B”的影响强度为10。
A对B的影响程度,这是一个有方向的图。注意,这个方法和层次分析法不一样。比如:A对B造成的影响是10,B对A的影响可以是20。(而不是1/10)所以打分的时候,需要构建整个完整的矩阵表,而不是半个。
有了因素之间的影响关系,就可以构建直接影响矩阵(就是专家打分的结果矩阵)*
W
=
[
w
11
w
12
⋯
w
1
(
j
−
1
)
w
1
j
w
21
w
22
⋯
w
2
(
j
−
1
)
w
2
j
⋮
⋮
⋱
⋮
⋮
w
(
i
−
1
)
1
w
(
i
−
1
)
2
⋯
w
(
i
−
1
)
(
j
−
1
)
w
(
i
−
1
)
j
w
i
1
w
i
2
⋯
w
i
(
j
−
1
)
w
i
j
]
W = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1(j-1)} & w_{1j} \\ w_{21} & w_{22} & \cdots & w_{2(j-1)} & w_{2j} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ w_{(i-1)1} & w_{(i-1)2} & \cdots & w_{(i-1)(j-1)} & w_{(i-1)j} \\ w_{i1} & w_{i2} & \cdots & w_{i(j-1)} & w_{ij} \end{bmatrix}
W=
w11w21⋮w(i−1)1wi1w12w22⋮w(i−1)2wi2⋯⋯⋱⋯⋯w1(j−1)w2(j−1)⋮w(i−1)(j−1)wi(j−1)w1jw2j⋮w(i−1)jwij
2.2 直接影响矩阵规范化(行和最大值法)
对直接影响矩阵进行规范化。首先,对直接影响矩阵的每一行元素进行求和。然后,选取所有行的求和值中的最大值作为正规化值得分母。最后,将直接影响矩阵中每个元素除以行最大值,得到规范化后的直接影响矩阵中的元素。
2.3构建综合影响矩阵T
首先,计算单位矩阵与规范化的直接影响矩阵之间的差值。然后,计算差值矩阵的逆矩阵。最后,用规范化的直接影响矩阵乘以逆矩阵即可得到综合影响矩阵。
不用管前面的极限,就算最后一个等式就可以,简单迅速。
其中单位矩阵I就是主对角线为1,其他都为0的矩阵
2.4 计算影响度、被影响度、中心度和原因度
影响度指矩阵 ( T ) 中各行值和,表示各行要素对其他所有要素的综合影响值,有:
D i = ∑ j = 1 n T i j , ( i = 1 , 2 , … , n ) ( 4 ) D_i = \sum_{j=1}^n T_{ij}, \quad (i=1,2,\ldots,n) \quad (4) Di=j=1∑nTij,(i=1,2,…,n)(4)
被影响度指矩阵 ( T ) 中各列值和,表示各列要素对其他所有要素的综合影响值,有:
E i = ∑ j = 1 n T j i , ( i = 1 , 2 , … , n ) ( 5 ) E_i = \sum_{j=1}^n T_{ji}, \quad (i=1,2,\ldots,n) \quad (5) Ei=j=1∑nTji,(i=1,2,…,n)(5)
中心度表示因素在评价体系中的位置及其所起作用的大小,某要素的中心度为其影响度与被影响度之和,有:
B i = D i + C i ( 6 ) B_i = D_i + C_i \quad (6) Bi=Di+Ci(6)
原因度由某要素的影响度和被影响度相减得到,有:
C i = D i − E i ( 7 ) C_i = D_i - E_i \quad (7) Ci=Di−Ei(7)
下面和上面一样的,但是看起来更容易懂一点。
注意:
原因度为因果要素的判断指标,原因度大于0,该因素为原因要素;原因度小于0,该因素为结果要素。
中心度的值越大,表明该因素在因素体系中的位置及所起的作用也就越大。
3.范例
3.1 步骤一 直接影响矩阵
本研究基于文献梳理和案例分析确定了20个影响桥梁工程施工的因素,分别编号为A1、A2、A3、……、A19、A20,现通过问卷调查给这20个因素间的相互影响程度进行了打分,如下表所示,请运用DEMATEL方法确定因素间的因果关系。
步骤一:就是拿到直接影响矩阵,其中直接影响矩阵的范围没有要求,可以是1-5,1-100;或者1-100都可以。可以是小数或者整数。
3.2 步骤二 矩阵规范化A
(1)直接影响矩阵规范化:每一行求和,确定最大值。
可以发现最大值就是58.025,所以就可以将其作为分母进行规范化。
这里的实现就类似于标准化中的规一话的思想。
(2)直接影响矩阵中对应元素/行求和最大值
将矩阵中的每一个数值都除以上面求得的最大值58.025
例如[A1,A2] =3.665/58.025 = 0.063162429987(保留3位数或者几位都可以)
3.3 步骤三 综合影响矩阵T
(一)先自己构建一个和上面直接影响矩阵同等维度的单位矩阵I
(二)单位矩阵I—规范化直接影响矩阵 A
这里是将单位矩阵减去规范化直接影响矩阵 (三) 求出逆矩阵(I - A)^-1
(四) 规范化直接影响矩阵A X(单位矩阵-规范化直接影响矩阵A)^-1
综合影响矩阵T = 规范化直接影响矩阵A X(单位矩阵-规范化直接影响矩阵A)^-1
步骤四:计算影响度、被影响度、中心度和原因度
接下来就是计算影响度、被影响度、中心度和原因度
那么以A1为例子,我们计算一下A1的影响度、被影响度、中心度和原因度,其他的因素也是一样的计算过程。
影响度就是A1影响其他元素的影响程度,那么就是A1的对应行的值相加,注意也要加上自己对自己的影响。
被影响度就是A1被其他影响元素的的影响程度,那么就是A1的对应列的值相加,注意也要加上自己对自己的影响。
那么我们计算出来了影响度和被影响度,就可以根据下面计算出中心度和原因度了
就可以计算出所有因素的影响度和被影响度。其中原因度大于0就是原因因素,原因度小于0就是结果因素,
综上所述,我们可以得出如下结论:
原因因素包括: A1、A8、A11、A13、A14、A17;
结果因素包括: A2、A3、A4、A5、A6、A7、A9、A10、A15、A16、A18、A19、A20
3.4 因果关系图绘图可视化
那么有很多的论文里面为了清晰的表示出各种因素直接的关系,经常用可视化的形式
我们就可以用坐标轴的形式绘制因果图
将中心度M为横坐标,将原因度作为纵坐标,绘制因果关系图。该图可以直观体现因果关系(示例)。
其中,第1类为强原因因子集(第Ⅰ区),这类因子对研究对象的形成具有非常显著的影响,且对其他结果型因子有较大的影响;
第2类为弱原因因子集(第Ⅱ区),这类因子对研究对象的形成也具有重要影响,对其他结果型因子也有一定的影响;
第3类为弱结果因子集(第Ⅲ区),这类因子是其他原因型因子综合作用的结果,对研究对象的形成具有一定的影响;
第4类为强结果因子集(第Ⅳ区),这类因子也是其他原因型因子综合作用的结果,但是对研究对象的形成具有非常重要的影响。
DEMATEL计算所得因子中心度越大,其影响程度也就越大,因此,需要重点关注第Ⅰ区的强原因因子集及第Ⅳ区的强结果因子集。