矩阵的范数

向量范数

0-范数,向量中非零元素的个数。

1-范数: ∥ x ∥ 1 = ∑ i = 1 N ∣ x i ∣ \lVert x\rVert_1=\displaystyle\sum_{i=1}^N\lvert x_i\rvert x1=i=1Nxi,即向量元素绝对值之和,matlab调用函数norm(x, 1)

2-范数: ∥ x ∥ 2 = ( ∑ i = 1 N ∣ x i ∣ 2 ) 1 2 \lVert x\rVert_2=(\displaystyle\sum_{i=1}^N\lvert x_i\rvert^2)^{\frac12} x2=(i=1Nxi2)21,Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方,matlab调用函数norm(x, 2)

∞-范数: ∥ x ∥ ∞ = max ⁡ i ∥ x i ∥ \lVert x\rVert_{\infin}=\displaystyle\max_i\lVert x_i\rVert x=imaxxi,即所有向量元素绝对值中的最大值,matlab调用函数norm(x, inf)

-∞-范数: ∥ x ∥ − ∞ = min ⁡ i ∥ x i ∥ \lVert x\rVert_{-\infin}=\displaystyle\min_i\lVert x_i\rVert x=iminxi,即所有向量元素绝对值中的最小值,matlab调用函数norm(x, -inf)

p-范数: ∥ x ∥ ∞ = ( ∑ i = 1 N ∣ x i ∣ p ) 1 p \lVert x\rVert_{\infin}=(\displaystyle\sum_{i=1}^N\lvert x_i\rvert^p)^{\frac1p} x=(i=1Nxip)p1,即向量元素绝对值的p次方和的1/p次幂,matlab调用函数norm(x, p)

矩阵范数

1-范数: ∥ A ∥ 1 = max ⁡ j ∑ i = 1 m ∣ a i j ∣ \lVert A\rVert_1=\displaystyle\max_j\sum_{i=1}^m|a_{ij}| A1=jmaxi=1maij, 列和范数,即所有矩阵列向量绝对值之和的最大值,matlab调用函数norm(A, 1)

2-范数: ∥ A ∥ 2 = λ 1 , λ 1 \lVert A\rVert_2=\sqrt{\lambda_1},\lambda_1 A2=λ1 λ1 A T A A^TA ATA的最大特征值,谱范数,即A’A矩阵的最大特征值的开平方。matlab调用函数norm(x, 2)

∞-范数: ∥ A ∥ ∞ = max ⁡ i ∑ j = 1 n ∣ a i j ∣ \lVert A\rVert_{\infin}=\displaystyle\max_i\sum_{j=1}^n|a_{ij}| A=imaxj=1naij,行和范数,即所有矩阵行向量绝对值之和的最大值,matlab调用函数norm(A, inf)

F-范数: ∥ A ∥ F = ( ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ 2 ) 1 2 \lVert A\rVert_F=(\displaystyle\sum_{i=1}^m\sum_{j=1}^n|a_{ij}|^2)^{\frac12} AF=(i=1mj=1naij2)21,Frobenius范数,即矩阵元素绝对值的平方和再开平方,matlab调用函数norm(A, ’fro‘)

核范数: ∥ A ∥ ∗ \lVert A\rVert_* A,矩阵的奇异值之和,可以用来表示低秩(因为最小化核范数,相当于最小化矩阵的秩——低秩,matlab调用函数sum(svd(A))

  • 8
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值