在windows中对torch1.7.1版本环境配置

复杂的安装方式:(不推荐)

环境内容

torch:1.7.1

安装Python版本要求

Python 3.53.7

下载 ANACONDA 对 Python版本和第三方库进行管理

官方推荐下载:https://pytorch.org/
在这里插入图片描述

conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia

在这里插入图片描述

下载 Cudnn 和 CUDA (可选)

可在命令行汇总执行查看驱动版本:

nvidia-smi

或者通过NVIDIA控制面板在菜单栏 帮助 中选择 系统信息
在这里插入图片描述
然后再选择组件
在这里插入图片描述
根据本地的NVIDIA CUDA 版本去找到官方对应的CUDA版本
在这里插入图片描述
CUDA Toolkit 11.0 Download:
https://developer.nvidia.com/cuda-11.0-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
在这里插入图片描述
下载成功后进行安装在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

安装完成之后,还需要下载cuDNN,这里需要登录并填写问卷才能下载
cuDNN:https://developer.nvidia.com/rdp/cudnn-download

在这里插入图片描述
下载后进行解压
在这里插入图片描述
在这里插入图片描述
把 cuda 压缩包解压出来的文件复制到盘符:…\NVIDIA GPU Computing Toolkit\CUDA\v11.0中
在这里插入图片描述

接下来设置环境变量:
计算机上点右键,打开属性->高级系统设置->环境变量
可以看到系统中多了CUDA_PATH和CUDA_PATH_V11_0两个环境变量
如下图所示:
在这里插入图片描述

接下来,还要在系统中添加以下几个环境变量:

CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.0(这是我默认安装位置的路径)
CUDA_LIB_PATH = %CUDA_PATH%\lib\x64
CUDA_BIN_PATH = %CUDA_PATH%\bin
CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64
CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64

如下图所示:
在这里插入图片描述

在系统变量 PATH 的末尾添加:

%CUDA_LIB_PATH%;
%CUDA_BIN_PATH%;
%CUDA_SDK_LIB_PATH%;
%CUDA_SDK_BIN_PATH%;

再添加如下4条(默认安装路径):

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\bin;
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\libnvvp
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\lib

如果你选用了自定义路径,上述这些默认路径都应该相应替换为你的自定义路径,以上为我的环境变量和PATH的配置情况:

环境变量:
配置完成后,我们可以验证是否配置成功,主要使用CUDA内置的deviceQuery.exe 和 bandwithTest.exe:

首先win+R启动cmd,cd到安装目录下的 …\NVIDIA GPU Computing Toolkit\CUDA\v11.0\extras\demo_suite
然后分别执行bandwidthTest.exedeviceQuery.exe应该得到下图:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

如果以上两步都返回了Result=PASS,那么就算成功了。

在ANACONDA 中安装 pytorch 选择安装1.7.1版本

在这里插入图片描述
清华conda源地址:https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/

添加清华源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

建议同时添加第三方conda源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

在cmd中 输入 python 进入python 编译环境后,输入以下命令测试 pytorch GPU版本是否安装成功

import torch
print(torch.version.cuda)
print(torch.cuda.is_available())

在这里插入图片描述


另一种安装方式

简单粗暴安装方式:(强烈推荐)

安装虚拟环境

conda create -n pytorch python=3.6

切换到 刚创建的 pytorch中

conda activate pytorch

在这里插入图片描述

添加清华源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

建议同时添加第三方conda源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

安装 pytorch

conda install pytorch torchvision torchaudio cudatoolkit=11.1

通过以下指令,查看当前python环境是否成功安装了 torch 1.7.1

pip list

在这里插入图片描述
在cmd中 输入 python 进入python 编译环境后,输入以下命令测试 pytorch GPU版本是否安装成功

import torch
print(torch.version.cuda)
print(torch.cuda.is_available())

在这里插入图片描述

在这里插入图片描述
几步搞定,不需要去 安装Cudnn 和 CUDA!!!!!!

### 使用 Zotero 插件增强 WPS Office 的文献管理能力 为了使 WPS Office 能够更好地集成 Zotero 的文献管理功能,用户可以借助特定插件来实现这一目标。通过结合 WPS-Zotero 插件,在 WPS Office 中能够无缝使用 Zotero 的文献管理特性,从而显著提高办公和学术写作效率[^1]。 #### 安装过程概述 对于希望在 WPS 中启用 Zotero 支持的用户来说,可以通过以下方式完成安装: - **下载并配置 VBA for WPS 2019**:由于 WPS 默认不支持某些高级脚本语言,因此需要先安装额外的支持组件。具体操作为导入加载项至 `C:\Users\ 用户名 \AppData\Roaming\Microsoft\Word\STARTUP` 文件夹内;如果该路径不存在,则需前往 Zotero 首选项中重新设置[^3]。 - **获取与安装 WPS-Zotero 插件**:按照官方指南或社区分享资源中的说明进行手动安装。通常情况下,这涉及到从可信源下载最新版本的插件包,并遵循提示逐步执行安装程序[^2]。 #### 实际应用案例展示 一旦成功集成了上述提到的功能模块之后,就可以像下面这样利用它们来进行高效的文献管理工作了: 假设现在正在撰写一篇关于人工智能伦理的研究报告,此时想要引用几篇重要的期刊文章作为论据支撑。有了这个组合工具的帮助后,只需简单几步就能轻松搞定: ```python # Python 示例仅用于示意如何调用 API 或者命令行接口, # 并不是实际存在的代码片段。 import zotero_api def add_reference_to_wps(reference_id): """向当前文档添加指定 ID 的参考文献""" reference_data = zotero_api.get_reference_by_id(reference_id) wps_document.insert_citation(reference_data) add_reference_to_wps('abc123') # 假设 'abc123' 是某条记录的唯一标识符 ``` 这段伪代码展示了怎样通过编程手段自动化处理文献引用的过程——当然现实中会更加复杂一些,但原理相同。值得注意的是,这里所使用的函数库 (`zotero_api`) 和方法名称均为虚构示例,请读者理解其背后的逻辑而非字面意义。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值