可积的第一充要条件
函数f在[a,b]上可积的充要条件是:f在[a,b]上的上积分与下积分相等, 即S=s.
可积的第二充要条件
函数f在[a,b]上可积的充要条件是:任给正数,
,总存在某一分割T,使得S(T)-s(T)<
,即
.
可积的第三充要条件
函数f在[a,b]上可积的充要条件是:任给正数,
,总存在某一分割T,使得属于T的所有小区间中,对应于振幅
的那些小区间
的总长
.
可积的第一充要条件
函数f在[a,b]上可积的充要条件是:f在[a,b]上的上积分与下积分相等, 即S=s.
可积的第二充要条件
函数f在[a,b]上可积的充要条件是:任给正数,
,总存在某一分割T,使得S(T)-s(T)<
,即
.
可积的第三充要条件
函数f在[a,b]上可积的充要条件是:任给正数,
,总存在某一分割T,使得属于T的所有小区间中,对应于振幅
的那些小区间
的总长
.