定积分的应用(一)

一.平面图形的面积


1.直角坐标方程的情形

   设函数y=f(x), x\in [a,b] 或者函数x=g(y) , y\in [c,d]

  • x型区域:S(A)=\int_{a}^{b}(f_{2}(x)-f_{1}(x))dx
  • y型区域:S(B)=\int_{c}^{d}(g_{2}(y)-g_{1}(y))dy

2.参数方程的情形  

参数方程\left\{\begin{matrix} x = x(t) & \\y = y(t) \end{matrix}\right.t\in [\alpha ,\beta ]

S=\int_{\alpha }^{\beta }\left | y(t)x'(t) \right |dt

3.极坐标方程的情形

设极坐标方程r=r(\theta ),\theta \in [\alpha ,\beta ]

S=1/2\int_{\alpha }^{\beta }(r(\theta ))^2d(\theta )

二.由平行截面面积求体积


导出截面面积,求体积

截面面积函数A(x)[a,b]上的一个连续函数.

则体积为:v=\int_{a}^{b}A(x)dx

旋转体的体积

f[a,b]上的连续函数,\Omega是由平面图形0\leqslant \left | y \right |\leqslant \left | f(x) \right |,a\leqslant x\leqslant b,绕x轴旋转一周所得的旋转体,则截面面积函数为A(x)=\pi[f(x)]^2,x\in [a,b],则旋转体\Omega的体积公式为

  • 绕x轴:V=\pi\int_{a}^{b}[f(x)]^2dx,a\leqslant x\leqslant b
  • 绕y轴:V=\pi\int_{c}^{d}[g(y)]^2dy,c\leqslant y\leqslant d

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值