无偏估计篇—番外篇1—没有无偏估计统计量的栗子们

栗子1 设样本 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p) n n n已知而 p p p为未知参数(样本大小为1), g ( p ) = s i n   p g(p)=sin~p g(p)=sin p.因为 X X X只取 0 , 1 , . . . , n 0,1,...,n 0,1,...,n这些值,为定义一个估计量 g ^ \hat{g} g^,只需指出 g ^ ( i ) \hat{g}(i) g^(i)的值 a i ( i = 0 , 1 , . . . , n ) a_i(i=0,1,...,n) ai(i=0,1,...,n)即可.


容易知道, g ^ \hat{g} g^必为有偏的.
如果 g ^ \hat{g} g^为无偏的,则应有
E p [ g ^ ( X ) ] = ∑ i = 0 n a i ( n i ) p i ( 1 − p ) n − i = g ( p ) = s i n   p , ∀ p ∈ ( 0 , 1 ) E_p[\hat{g}(X)]=\sum_{i=0}^{n}a_i\binom{n}{i}p^i(1-p)^{n-i}=g(p)=sin~p,\forall p\in (0,1) Ep[g^(X)]=i=0nai(in)pi(1p)ni=g(p)=sin p,p(0,1)
但是一个多项式函数是不可能在一个区间上处处等于一个超越函数 s i n   p sin~p sin p的.因此不可能存在 s i n   p sin~p sin p的无偏估计.



栗子2 X 1 , X 2 , . . . , X n ∼ N ( θ , 1 ) X_1,X_2,...,X_n \sim N(\theta,1) X1,X2,...,XnN(θ,1).则 g ( θ ) = ∣ θ ∣ g(\theta)=|\theta| g(θ)=θ没有无偏估计.


如果存在无偏估计 g ^ ( X ) \hat{g}(X) g^(X),那么应有
E θ ( g ^ ( X ) ) = ∫ − ∞ + ∞ g ^ ( x 1 , . . . , x n ) p ( x 1 , x 2 , . . . , x n , θ ) d x 1 d x 2 . . . d x n = ∣ θ ∣ E_\theta(\hat{g}(X))=\int_{-\infty}^{+\infty}\hat{g}(x_1,...,x_n)p(x1,x2,...,xn,\theta)dx_1dx_2...dx_n=|\theta| Eθ(g^(X))=+g^(x1,...,xn)p(x1,x2,...,xn,θ)dx1dx2...dxn=θ
然后会发现 左边可以对 θ \theta θ取任意值进行求导(控制收敛定理).
d d θ ∫ − ∞ + ∞ g ^ ( x 1 , . . . , x n ) p ( x 1 , x 2 , . . . , x n , θ ) d x 1 d x 2 . . . d x n = ∫ − ∞ + ∞ g ^ ( x 1 , . . . , x n ) d d θ p ( x 1 , x 2 , . . . , x n , θ ) d x 1 d x 2 . . . d x n \frac{d}{d\theta}\int_{-\infty}^{+\infty}\hat{g}(x_1,...,x_n)p(x1,x2,...,xn,\theta)dx_1dx_2...dx_n=\int_{-\infty}^{+\infty}\hat{g}(x_1,...,x_n)\frac{d}{d\theta}p(x1,x2,...,xn,\theta)dx_1dx_2...dx_n dθd+g^(x1,...,xn)p(x1,x2,...,xn,θ)dx1dx2...dxn=+g^(x1,...,xn)dθdp(x1,x2,...,xn,θ)dx1dx2...dxn
但是右式 ∣ θ ∣ |\theta| θ 0 0 0处不可导,这就产生了矛盾.
说明 ∣ θ ∣ |\theta| θ的无偏估计量 g ^ ( X ) \hat{g}(X) g^(X)是不存在的.



参考资料: 《数理统计学教程》(陈希孺)

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值