【璀璨数海】第一期 隐函数定理

隐函数定理

在这里插入图片描述

鸽了好久了,大三生活真的好累啊!
\quad\quad 前两天夏令营面试的时候被问到了隐函数定理,特此专门写一篇博文来重新复习讲解一下隐函数定理的内容。

定理内容:

假定 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)是平面曲线 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0上一点,且函数 F ( x , y ) F(x,y) F(x,y)关于 x , y x,y x,y连续可微。如果在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) F y ( x , y ) ≠ 0 F_y(x,y)\neq 0 Fy(x,y)=0,那么在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)附近该曲线有显式表达式 y = f ( x ) y=f(x) y=f(x),且该显式表达式可微,有 y y y关于 x x x的一阶导数 f ′ ( x ) = − F x F y f'(x)=-\frac{F_x}{F_y} f(x)=FyFx

定理证明:

存在性:

我们来对上述命题进行一下证明, F y ≠ 0 F_y\neq0 Fy=0告诉了我们什么信息呢?

表明 x 0 x_0 x0保持不动, y 0 y_0 y0增加一点点以及减少一点点的时候,F值会随之增加一点点或减小一点点(如果 F y F_y Fy ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处为正)。我们通过图片展示出来:
在这里插入图片描述
其中 A , B , C A,B,C A,B,C点有相同的横坐标 x 0 x_0 x0,B点即为上文中提到的点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0),A点纵坐标增加了一丢丢,为 ( x 0 , y 0 + d y ) (x_0,y_0+dy) (x0,y0+dy);C点纵坐标减小了一丢丢,为 ( x 0 , y 0 − d y ) (x_0,y_0-dy) (x0,y0dy) d y dy dy充分小,使得 F ∣ A > 0 F|_A>0 FA>0 F ∣ B = 0 F|_B=0 FB=0 F ∣ C < 0 F|_C<0 FC<0

这时候再以 A A A C C C为中心,进行延伸:
在这里插入图片描述
因为于 A A A处, C C C处连续,存在充分小邻域使得 F F F A 1 − A 2 A1-A2 A1A2 线段上以及端点 A 1 , A 2 A1,A2 A1,A2取值正负相同, F F F C 1 − C 2 C1-C2 C1C2 线段上以及端点 C 1 , C 2 C1,C2 C1,C2取值正负相同。这样,对于任意该小邻域内的 x 1 x_1 x1,做 y y y轴平行线,交线段 A 1 − A 2 A1-A2 A1A2于一点 X 1 X_1 X1,交线段 C 1 − C 2 C1-C2 C1C2于一点 X 2 X_2 X2
在这里插入图片描述
则有 F ∣ X 1 > 0 , F ∣ X 2 < 0 F|_{X_1}>0,F|_{X_2}<0 FX1>0,FX2<0。由于在线段 X 1 − X 2 X_1-X_2 X1X2 F F F取值连续,由介值定理,存在线段 X 1 − X 2 X_1-X_2 X1X2上一点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)使得 F ( x 1 , y 1 ) = 0 F(x_1,y_1)=0 F(x1,y1)=0

下面证明不仅仅是存在 y 1 y_1 y1,而且 y 1 y_1 y1还是唯一的。因为 F F F在B点附近是连续可微的,且 F y ∣ B > 0 F_y|_B>0 FyB>0。因而可以找一个更小的邻域,满足于更小的邻域上,有 F y > 0 F_y>0 Fy>0,这样,对于每一个 x x x,在对应的线段 X 1 ′ − X 2 ′ X'_1-X'_2 X1X2上函数 F F F从下到上函数值单调递增。这样介值y的值就是唯一存在的了。

到目前为止我们证明了局部函数 y = f ( x ) y=f(x) y=f(x)的存在性,下面来验证函数 y = f ( x ) y=f(x) y=f(x)的连续性与可微性。

连续性:

首先来证明连续性,我们回顾下连续性的定义,即是说:
∀ ϵ , ∃ δ , s . t . ∣ y − y 0 ∣ < ϵ i f ∣ x − x 0 ∣ < δ . \forall \epsilon ,\exist \delta,s.t. |y-y_0|<\epsilon \quad if\quad |x-x_0|<\delta. ϵ,δ,s.t.yy0<ϵifxx0<δ.
那么我们在首次选取邻域的时候只需要选择 ∣ A C ∣ < ϵ |AC|<\epsilon AC<ϵ即可保证对应的临近的y值都满足: ∣ y − y 0 ∣ < ϵ |y-y_0|<\epsilon yy0<ϵ

可微性:

下面来证明可微性。当然这里可微性的证明要以 F F F的可微性作为支持。
我们知道,F连续可微,因而在B点充分小邻域内 F x , F y F_x,F_y Fx,Fy连续。那我考虑 x 0 x_0 x0邻域中的x,对应有相应的 y = f ( x ) y=f(x) y=f(x)

我们考虑点 ( x , y 0 ) (x,y_0) (x,y0),将函数值 F ( x , y 0 ) F(x,y_0) F(x,y0) ( x 0 , y 0 ) (x_0,y_0) (x0,y0) ( x , y 0 ) (x,y_0) (x,y0)之间运用中值定理有:

F ( x , y 0 ) = F ( x 0 , y 0 ) + F x ( x θ , y 0 ) ( x − x 0 ) , x 0 < x θ < x . F(x,y_0)=F(x_0,y_0)+F_x(x_\theta,y_0)(x-x_0),x_0<x_\theta<x. F(x,y0)=F(x0,y0)+Fx(xθ,y0)(xx0),x0<xθ<x.

将函数值 F ( x , y 0 ) F(x,y_0) F(x,y0) ( x , f ( x ) ) (x,f(x)) (x,f(x)) ( x , y 0 ) (x,y_0) (x,y0)之间运用中值定理有:

F ( x , y 0 ) = F ( x , f ( x ) ) − F y ( x , y θ ) ( f ( x ) − y 0 ) , y 0 < y θ < f ( x ) . F(x,y_0)=F(x,f(x))-F_y(x,y_\theta)(f(x)-y_0),y_0<y_\theta<f(x). F(x,y0)=F(x,f(x))Fy(x,yθ)(f(x)y0),y0<yθ<f(x).
由于 F ( x 0 , y 0 ) = F ( x , f ( x ) ) = 0 F(x_0,y_0)=F(x,f(x))=0 F(x0,y0)=F(x,f(x))=0,因而结合以上两式子,有:

f ( x ) = y 0 − F x ( x θ , y 0 ) F y ( x , y θ ) ( x − x 0 ) f(x)=y_0-\frac{F_x(x_\theta,y_0)}{F_y(x,y_\theta)}(x-x_0) f(x)=y0Fy(x,yθ)Fx(xθ,y0)(xx0)

F x ( x θ , y 0 ) F y ( x , y θ ) = F x F y ∣ ( x 0 , y 0 ) + o ( 1 ) \frac{F_x(x_\theta,y_0)}{F_y(x,y_\theta)}=\frac{F_x}{F_y}|_{(x_0,y_0)}+o(1) Fy(x,yθ)Fx(xθ,y0)=FyFx(x0,y0)+o(1)
因而有: f ( x ) = y 0 − F x F y ∣ ( x 0 , y 0 ) ( x − x 0 ) + o ( ∣ x − x 0 ∣ ) f(x)=y_0-\frac{F_x}{F_y}|_{(x_0,y_0)}(x-x_0)+o(|x-x_0|) f(x)=y0FyFx(x0,y0)(xx0)+o(xx0)
根据可微定义,可知 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0处可微,且 y x = − F x F y y_x=-\frac{F_x}{F_y} yx=FyFx.

几何意义

下面我们来看一个例子:
在这里插入图片描述
这是一个半径为1,圆心位于原点的圆。可以看到在 ( − 1 , 1 ) (-1,1) (1,1)中一个 x x x值对应会有两个y值,因而这不是一个函数,但是却可以用隐函数 F ( x , y ) = x 2 + y 2 − 1 = 0 F(x,y)=x^2+y^2-1=0 F(x,y)=x2+y21=0的形式表示出这个平面曲线。但是在关注局部的时候,我们发现大多数情况,是可以用函数表示的。比如任取上半圆中一点:
在这里插入图片描述
在其附近确实能对任意x值找到唯一的y值与其对应。
同样的,在下半圆也是如此。

对应关系式为:
y = 1 − x 2 , 上 半 圆 ; y = − 1 − x 2 , 下 半 圆 . y=\sqrt{1-x^2},上半圆;y=-\sqrt{1-x^2},下半圆. y=1x2 ,y=1x2 ,.

特别的可以观察到,在 ( − 1 , 0 ) (-1,0) (1,0) ( 1 , 0 ) (1,0) (1,0)两个点处,有 F y = 0 F_y=0 Fy=0;在图像上有对于其附近的任意定义域中 x x x,都无法找到唯一的 y y y与之对应。(这里是找到2个,这个个数的不同是否可以对这种奇点进行分类?)。

降维打击

F ( x , y ) F(x,y) F(x,y)实际上是一个三维的曲面,当 F ( x , y ) F(x,y) F(x,y)值取定的时候,是否是一个曲线呢?还是一个点呢?
( F x ) 2 + ( F y ) 2 ≠ 0 (F_x)^2+(F_y)2\neq0 (Fx)2+(Fy)2=0时,我们知道必然有 F x ≠ 0 F_x\neq0 Fx=0或者 F y ≠ 0 F_y\neq0 Fy=0。那么在该点存在y和x的限制关系,即是说可表述为二维曲线形式 y = f ( x ) y=f(x) y=f(x)或者 x = g ( y ) x=g(y) x=g(y)
而当 ( F x ) 2 + ( F y ) 2 = 0 (F_x)^2+(F_y)2=0 (Fx)2+(Fy)2=0时,我们知道这是一个驻点或者是极值点,这时候的等高线是什么样子呢?
1.可以是一个平面。
2.可以是一个点。
3.可以是一个曲线。


文案:锦帆远航
图片:锦帆远航

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值