微分几何 Class 3 曲线,曲率与挠率

正则曲线

什么是曲线

在空间中,我们会见到各种各样的形状,但无论什么形状,其根本还是由点和线来构成的,这里我们的线是一个直观的理解,就是一条直直的,有的也是弯的那样的,类似于我们衣服上的线头一样的那种东东。

线是由一系列的点组成的;无数的线组成了面;无数的面形成体积;庞大的体积则包括无数体积…… 《沙之书》

但是我们想用数学来描述这样的一个东西,我们在这里便引入了运动学的观点,假设在空间中有着这样一个质点,他随着时间在空间中连续地移动,对于每一个时间点 t t t,质点都有一个对应的位置 f ( t ) f(t) f(t),当时间从负无穷流动到正无穷,质点的运动过程便对应了空间中一条轨道。我们便把这样一条轨道称之为曲线

按照经典的定义,从 ( a , b ) (a,b) (a,b) R 3 R^3 R3中的连续映射就是一条曲线

Question:曲线是否有除去运动学之外的其它的定义方式?

怎样的曲线性质好

当我们定义出了曲线后,我们会发现他只能满足一个连续的性质,但在用微分学分析过程中,我们希望能够对曲线上的每个点进行微分操作,我们便还会要求曲线具有正则性

Def:正则曲线
曲线 r : ( a , b ) → E 2 ( E 3 ) \textbf{r}:(a,b)\rightarrow E^2(E^3) r:(a,b)E2(E3)称为正则曲线,如果:

  1. 曲线的每一个分量都是 C ∞ C^\infty C函数,
  2. ∣ d r d t ∣ > 0 , ∀ t ∈ ( a , b ) |\frac{d\textbf{r}}{dt}|>0,\forall t\in(a,b) dtdr>0,t(a,b)

我们来分析一下上面两个条件对曲线提出的要求。
首先,第一个要求保证了曲线的光滑型,使得我可以对 r \textbf{r} r求任意阶导数;除去了下面这类曲线的可能情况:
在这里插入图片描述

第二个要求则是为了保证隐函数定理成立。(隐函数隐函数隐函数!!!(一定得写个坑出来!))(这里及其需要补充一段说明隐函数成立的意义,这个开到新的坑里面去hh)

不满足条件二的例子:
f ( t ) = ( t 2 , t 3 ) \textbf{f}(t)=(t^2,t^3) f(t)=(t2,t3)
在这里插入图片描述
其中在 ( 0 , 0 ) (0,0) (0,0)处该参数曲线关于参数无穷阶可微,但是在该点导数值为 ( 0 , 0 ) (0,0) (0,0),当以 x x x参数形式表示时,便是不光滑的。

(导函数不为0是为了满足在任意一种参数下其于该点处都保证无穷阶可微)

Question:欧氏空间上的微分与欧氏向量空间上的微分有哪些区别与联系?


在定义完成性质较好的正则曲线之后,我们下面的研究就将针对正则曲线展开。

E 2 E^2 E2中的曲线

E 2 E^2 E2中,每个点都能够用两个坐标分量 ( x , y ) (x,y) (x,y)来进行表示,那么平面正则曲线往往会以 r ( t ) = ( x ( t ) , y ( t ) ) , t ∈ ( a , b ) \textbf{r}(t)=(x(t),y(t)),t\in(a,b) r(t)=(x(t),y(t)),t(a,b)的形式出现。

在这个时候,我们重新对 t t t进行一种审视。我们在定义曲线时是用动力学的观点来定义的, t t t是质点运动的时间。可我们是否可能定义另外的一种时间呢?比如以太阳的高度度量时间,以日冕的影长来度量时间,或者以十二时辰来度量时间。

其实不同的测量方式是加在参数空间 R R R上的不同度量,但是在不同的度量下,我 E 2 E^2 E2中曲线对应的点的集合是不发生改变的,而且仍然能够保证关于参数的连续性。


切向量

我们假设参数为 t t t, 那么有了上述正则曲线满足的性质,我们便能够定义质点运动过程中在某一点处的速度。而这个速度正是我们要提出的曲线 r \textbf{r} r切向量 ( x ′ ( t ) , y ′ ( t ) ) . (x'(t),y'(t)). (x(t),y(t)).

根据正则曲线的定义,我们知道切向量的模长大于0,因而它一定会有一个方向,那么这个方向的含义是什么呢?

按照我们的常识,这个方向指向了下一时刻我们要移动的方向。在这时候,我们可以结合泰勒展开来对切向量进行理解:
r ( t ) = ( x ( t ) , y ( t ) ) = ( x ( t 0 ) + x ′ ( t 0 ) ( t − t 0 ) + O ( ( t − t 0 ) 2 ) , y ( t 0 ) + y ′ ( t 0 ) ( t − t 0 ) + O ( ( t − t 0 ) 2 ) ) = r ( t 0 ) + ( t − t 0 ) r ′ ( t 0 ) + O ( ( t − t 0 ) 2 ) r(t)=(x(t),y(t))=(x(t_0)+x'(t_0)(t-t_0)+O((t-t_0)^2),y(t_0)+y'(t_0)(t-t_0)+O((t-t_0)^2))=r(t_0)+(t-t_0)r'(t_0)+\textbf{O}((t-t_0)^2) r(t)=(x(t),y(t))=(x(t0)+x(t0)(tt0)+O((tt0)2),y(t0)+y(t0)(tt0)+O((tt0)2))=r(t0)+(tt0)r(t0)+O((tt0)2)
ps:后面的 O O O是个向量噢~

也就是说,切向量实际上从一阶线性角度表述了曲线的变化方向变化速度


单位切向量

在用不同参数其描述我们的切向量时,会发现有一些不同,比如我们有微分变换下的两个参数 t t t s s s,在以 t t t为参数下假设曲线为
r ( t ) = ( x ( t ) , y ( t ) ) , r ′ ( t ) = ( x ′ ( t ) , y ′ ( t ) ) = ( d x ( t ) / d t , d y ( t ) / d t ) ; r(t)=(x(t),y(t)),r'(t)=(x'(t),y'(t))=(dx(t)/dt,dy(t)/dt); r(t)=(x(t),y(t)),r(t)=(x(t),y(t))=(dx(t)/dt,dy(t)/dt);
当我们进行参数变换时,切向量也会随之发生变化:
r ′ ( s ) = r ′ ( t ( s ) ) = ( d x / d s , d y / d s ) = ( d x / d t ⋅ d t / d s , d y / d t ⋅ d t / d s ) = ( d t / d s ) ( d x / d t , d y / d t ) = ( d t / d s ) r ′ ( t ) r'(s)=r'(t(s))=(dx/ds,dy/ds)=(dx/dt\cdot dt/ds,dy/dt\cdot dt/ds)=(dt/ds)(dx/dt,dy/dt)=(dt/ds)r'(t) r(s)=r(t(s))=(dx/ds,dy/ds)=(dx/dtdt/ds,dy/dtdt/ds)=(dt/ds)(dx/dt,dy/dt)=(dt/ds)r(t)
综上:
r ′ ( s ) = ( d t / d s ) r ′ ( t ) r'(s)=(dt/ds)r'(t) r(s)=(dt/ds)r(t)

会发现几个结论:

  1. 当参数进行可微变换时,切向量的大小可能会改变,但是其方向(当然正负可能会变)不会改变。
  2. 如果以 d s / d t = ∣ r ′ ( t ) ∣ = ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 ds/dt=|r'(t)|=\sqrt{(x'(t))^2+(y'(t))^2} ds/dt=r(t)=(x(t))2+(y(t))2 为变换映射进行参数变化,那么我们就能够得到所谓的自然参数 s s s,其满足:
    ∣ r ′ ( s ) ∣ = ∣ d t / d s ∣ ∣ r ′ ( t ) ∣ = 1 |r'(s)|=|dt/ds||r'(t)|=1 r(s)=dt/dsr(t)=1
    换句话说,在这个参数下,我们质点的速度永远为1,他的速度改变被转移到了曲线长度的度量(参数变换)上去。

对应于切向量方向的单位向量,同时也就是在自然参数 s s s下的切向量,被我们称之为单位切向量

法向量,单位正法向量

在平面中,有的曲线是弯曲的,而有的曲线是不太弯的,有的曲线直接是直的:
在这里插入图片描述
这些曲线的弯曲程度肯定是不一样的。那么,我们该如何去描述这种曲线的弯曲程度呢?

回到我们的上一个小标题:单位切向量。我们会发现我们的单位切向量的终点始终会落在单位圆上面。如果我们研究的曲线是上图中的第三个,我们发现我们的单位切向量会始终不变。而对于会弯曲的曲线,我们的单位切向量方向会发生改变。

那么我们便会随之产生一个想法:是否能用我们的单位切向量的变化来表述曲线的弯曲程度呢?那能够衡量单位切向量变化的便是我们单位切向量的导数
a = d ( d r / d s ) / d t \textbf{a}=d(d\textbf{r}/ds)/dt a=d(dr/ds)/dt
我们下面说明这个向量 a \textbf{a} a一个奇妙的性质:
单位切向量关于时间参数t的导数 a \textbf{a} a始终与单位切向量 t \textbf{t} t垂直。


d / d t ( d r / d s , d r / d s ) = d / d t ( 1 ) = 0 d / d t ( d r / d s , d r / d s ) = ( d t / d t , t ) + ( t , d t / d t ) = 2 ∗ ( d t / d t , t ) ( d t / d t , t ) = ( a , t ) = 0 \begin{aligned} &d/dt(d\textbf{r}/ds,d\textbf{r}/ds)=d/dt(1)=0\\ &d/dt(d\textbf{r}/ds,d\textbf{r}/ds)=(d\textbf{t}/dt,\textbf{t})+(\textbf{t},d\textbf{t}/dt)=2*(d\textbf{t}/dt,\textbf{t})\\ &(d\textbf{t}/dt,\textbf{t})=(\textbf{a},\textbf{t})=0 \end{aligned} d/dt(dr/ds,dr/ds)=d/dt(1)=0d/dt(dr/ds,dr/ds)=(dt/dt,t)+(t,dt/dt)=2(dt/dt,t)(dt/dt,t)=(a,t)=0
因而结论得证。
我们把 a ( t ) \textbf{a}(t) a(t)方向上的向量称为曲线在 r ( t ) \textbf{r}(t) r(t)处的法向量,称与单位切向量 t \textbf{t} t构成 { i , j } \{\textbf{i},\textbf{j}\} {i,j}右手坐标系的单位法向量 n ( s ) \textbf{n}(s) n(s)称为曲线 r ( s ) \textbf{r}(s) r(s) ( x ( s ) , y ( s ) ) (x(s),y(s)) (x(s),y(s))处的单位正法向量,它由 t ( s ) \textbf{t}(s) t(s)唯一确定下来。

Question:当切向量不是对应于自然参数的单位切向量,而是针对于另一参数 t t t时,我们再对切向量求导,得到的导向量是否与我们上文中自然参数下的法向量同向?
Answer:并不一定同向,首先我们有切向量表达式:
( x ′ ( t ) , y ′ ( t ) ) = ( d x / d s ⋅ d s / d t , d y / d s ⋅ d s / d t ) = ( d s / d t ) ⋅ d ( x , y ) / d s = ( d s / d t ) ⋅ t ( s ) \begin{aligned} (x'(t),y'(t))&=(dx/ds \cdot ds/dt,dy/ds \cdot ds/dt)\\ &=(ds/dt)\cdot d(x,y)/ds\\ &=(ds/dt)\cdot \textbf{t}(s)\\ \end{aligned} (x(t),y(t))=(dx/dsds/dt,dy/dsds/dt)=(ds/dt)d(x,y)/ds=(ds/dt)t(s)
因而我们对该切向量求导便有:
( d / d t ) ( x ′ ( t ) , y ′ ( t ) ) = ( d / d t ) ( ( d s / d t ) ⋅ t ( s ) ) = ( d 2 s / d t 2 ) ⋅ t ( s ) + ( d s / d t ) ⋅ n ( s ) = x ′ x ′ ′ + y ′ y ′ ′ ( x ′ ) 2 + ( y ′ ) 2 ⋅ t ( s ) + ( x ′ ) 2 + ( y ′ ) 2 ⋅ n ( s ) = < r ′ ( t ) , r ′ ′ ( t ) > ⋅ t ( s ) + < r ′ ( t ) , r ′ ( t ) > ⋅ n ( s ) ( x ′ ) 2 + ( y ′ ) 2 \begin{aligned} (d/dt)(x'(t),y'(t))&=(d/dt)((ds/dt)\cdot \textbf{t}(s))\\ &=(d^2s/dt^2)\cdot\textbf{t}(s)+(ds/dt)\cdot\textbf{n}(s)\\ &=\frac{x'x''+y'y''}{\sqrt{(x')^2+(y')^2}}\cdot\textbf{t}(s)+\sqrt{(x')^2+(y')^2}\cdot\textbf{n}(s)\\ &=\frac{<r'(t), r''(t)>\cdot \textbf{t}(s)+<r'(t),r'(t)>\cdot \textbf{n}(s)}{\sqrt{(x')^2+(y')^2}} \end{aligned} (d/dt)(x(t),y(t))=(d/dt)((ds/dt)t(s))=(d2s/dt2)t(s)+(ds/dt)n(s)=(x)2+(y)2 xx+yyt(s)+(x)2+(y)2 n(s)=(x)2+(y)2 <r(t),r(t)>t(s)+<r(t),r(t)>n(s)
在高中物理中我们学过,一个质点的加速度不但会有切向加速度而且有时候会有法向加速度。在上面的式子中,第一项即为切向加速度,第二项为法向加速度

E 2 E^2 E2中曲线的曲率

E 3 E^3 E3中的曲线

E 3 E^3 E3中曲线的曲率

E 3 E^3 E3中曲线的挠率

专题

曲率与挠率正负的含义

曲率与挠率的简便计算

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值