码农多打拼5年对生子的影响

码农多打拼五年对生子决策的影响
首先我们确定在这个问题中要处理的对象:单个个体

他会有哪些属性呢?1.退休年限 2.生活状态

我们要分析的是一个事件对生子数目的影响,其实在现当代,因为过大的工作压力与老人变多的影响,很多家庭会选择丁克,因此我们不妨把问题转化行为为对生子决策的影响。

我们首先要确定的是与生子抉择直接相关的因素:对孩子生育及抚养所需要承担的成本,当然在中国讲求孝道,孩子的存在对个人老年生活质量的保证十分关键。因而个体老年生活的需求也应成为决定是否需要孩子的考虑因素。

需要注意的是,不同生活水平的个体对应的成本和需求都不尽相同,下面我们就要对其中的各种关系进行分析。

首先我们考虑生活水平与什么有关?
最先能想到的必然是个人的收入,但是具体情况也会因人而异,有的人是月光族,有的人会量入为出,而有的人十分节俭。我们在这点做出相应假设忽略个体间的差异,假设个人的生活水平与个体的工资(收入)线性相关
下面个体工资将用符号 S S S表示。

需要注意,个体的工资是时间的函数 S ( t ) S(t) S(t),对于一些个体这是一个增函数(高基础工作,工资随工作年龄而增高),对于一些个体这是一个常函数(中基础工作,类似于企业单位的铁饭碗),而对于一些个体这是一个减函数(低基础工作,工资随年龄增大而降低),这往往取决于职业的类型。重要的是,我们可以靠知识积累时间 T 1 T_1 T1来对这三种状态进行阈值划分

还需要考虑的是如今的大龄男性与大龄女性婚姻问题,3700万单身汉也是一个亟需解决的问题,这取决与个人状态与婚姻的需求成本。(这暂时只作为一个参考想法,模型成熟后选择性加入)

下面我们对工资函数做出一定假设:
(1)增函数类型

  1. 假设知识储备时间段 [ 0 , T 1 ] [0,T_1] [0,T1],退休年龄为 T 2 T_2 T2,则假设工资函数:
    S ( t ) = 0 , t ∈ [ 0 , T 1 ] ; S ( t ) = f ( t , T 1 , T 2 ) , t ∈ [ T 1 , T 2 ] . S(t)=0,t\in [0,T_1];S(t)=f(t,T_1,T_2),t \in[T_1,T_2]. S(t)=0,t[0,T1];S(t)=f(t,T1,T2),t[T1,T2].
  2. f ( x ) f(x) f(x)满足增函数要求且初值 f ( T 1 ) f(T_1) f(T1) T 1 T_1 T1正相关,为简化模型我们就假设 f ( T 1 ) = p 1 ⋅ T 1 f(T_1)=p_1\cdot T_1 f(T1)=p1T1.
    其中 p 1 p_1 p1基础工资参数,来为了拟合实际现实工资水平而存在。
  3. 我希望 f ( ⋅ ) f(\cdot) f()符合指数增长(随时间增长,高基础工作人员价值随工作时间指数增长),其中a为指数项中的常系数。
    f ( t , T 1 , T 2 ) = χ [ T 1 , T 2 ] ⋅ p 1 ⋅ ( exp ⁡ { a ⋅ ( t − T 1 ) } + T 1 − 1 ) f(t,T_1,T_2)=\chi_{[T_1,T_2]}\cdot p_1\cdot(\exp\{a\cdot(t-T_1)\}+T_1 -1) f(t,T1,T2)=χ[T1,T2]p1(exp{a(tT1)}+T11)
  4. a a a应该也与知识储备时间 T 1 T_1 T1成正相关关系,我们假设 a = k ⋅ T 1 a=k\cdot T_1 a=kT1.因而应有公式:
    f ( t , T 1 , T 2 ) = χ [ T 1 , T 2 ] ⋅ p 1 ⋅ ( exp ⁡ { k ⋅ T 1 ⋅ ( t − T 1 ) } + T 1 − 1 ) f(t,T_1,T_2)=\chi_{[T_1,T_2]}\cdot p_1\cdot(\exp\{k\cdot T_1\cdot(t-T_1)\}+T_1 -1) f(t,T1,T2)=χ[T1,T2]p1(exp{kT1(tT1)}+T11)
  5. 最终我们得到了工资函数的最终模型
    S ( t ) = 0 ⋅ χ [ 0 , T 1 ] ∪ [ T 2 , + ∞ ] + p 1 ⋅ ( exp ⁡ { k ⋅ T 1 ⋅ ( t − T 1 ) } + T 1 − 1 ) ⋅ χ [ T 1 , T 2 ] S(t)=0\cdot \chi_{[0,T_1]\cup[T_2,+\infty]}+ p_1\cdot(\exp\{k\cdot T_1\cdot(t-T_1)\}+T_1 -1)\cdot \chi_{[T_1,T_2]} S(t)=0χ[0,T1][T2,+]+p1(exp{kT1(tT1)}+T11)χ[T1,T2]

从这里我们可以得到一个个体在一个重要时间 T 2 T_2 T2的工资水平
S ( T 2 ) = p 1 ⋅ ( exp ⁡ { k ⋅ T 1 ⋅ ( T 2 − T 1 ) } + T 1 − 1 ) ⋅ χ [ T 1 , T 2 ] S(T_2)= p_1\cdot(\exp\{k\cdot T_1\cdot(T_2-T_1)\}+T_1 -1)\cdot \chi_{[T_1,T_2]} S(T2)=p1(exp{kT1(T2T1)}+T11)χ[T1,T2].

我们假设一个个体完成知识积累的时间为 T 1 = 25 T_1=25 T1=25,而退休年龄为 T 2 = 65 T_2=65 T2=65,取参数 k = 0.005 , p 1 = 200 k=0.005,p_1=200 k=0.005,p1=200,则我们展示该个体在上述模型下的工资曲线。
在这里插入图片描述

(2)常函数类型
我们同样假设常函数的初值取值与学习积累时间成正相关。则在该状态下的工资函数较容易得到:
S ( t ) = p 2 ⋅ ( 0 ⋅ χ [ 0 , T 1 ] ∪ [ T 2 , + ∞ ] + T 1 ⋅ χ [ T 1 , T 2 ] ) S(t)=p_2\cdot (0\cdot \chi_{[0,T_1]\cup [T_2,+\infty]}+T_1\cdot \chi_{[T_1,T_2]}) S(t)=p2(0χ[0,T1][T2,+]+T1χ[T1,T2])
其中 p 2 p_2 p2是基础工资参数,来为了拟合实际现实工资水平而存在。这里取 p 2 = 160 , T 1 = 18 , T 2 = 65. p_2=160,T_1=18,T_2=65. p2=160,T1=18,T2=65.
在这里插入图片描述

(3)减函数类型

  1. 在这里我们首先定义社会最低保障 S 0 S_0 S0,使得在任何情况下工资 S ( t , T 1 , T 2 ) ≥ S 0 S(t,T_1,T_2)\ge S_0 S(t,T1,T2)S0.

减函数情况下,我希望函数 S ( t , T 1 , T 2 ) S(t,T_1,T_2) S(t,T1,T2)满足以下要求:

  1. lim ⁡ t → T 2 S ( t , T 1 , T 2 ) = S 0 ; \lim_{t\to T_2}S(t,T_1,T_2)=S_0; limtT2S(t,T1,T2)=S0;
  2. S ( T 1 ) ≥ S 0 ; S(T_1)\ge S_0; S(T1)S0;
  3. ∣ ∂ S ∂ t ∣ < 0 |\frac{\partial S}{\partial t}|<0 tS<0,即是指我们希望工资水平前期减小得快,后期减小得慢。

在上述几个条件要求下,我认为最简单的函数便是:
S ( t , T 1 , T 2 ) = p 3 ⋅ ( 1 t − T 1 + T ′ + 1 p 3 ⋅ S 0 ) S(t,T_1,T_2)=p_3\cdot(\frac{1}{t-T_1+T'}+\frac{1}{p_3}\cdot S_0) S(t,T1,T2)=p3(tT1+T1+p31S0)
但是这个函数是把 [ T 1 , + ∞ ] [T1,+\infty] [T1,+]映射到了 [ p 3 T ′ + S 0 , S 0 ] [\frac{p_3}{T'}+S_0,S_0] [Tp3+S0,S0],而并非将 [ T 1 , T 2 ] [T1,T_2] [T1,T2]映射到了 [ p 3 T ′ + S 0 , S 0 ] [\frac{p_3}{T'}+S_0,S_0] [Tp3+S0,S0]
此时,聪明的数学系学生就会想到用三角变换 t a n ( ⋅ ) tan(\cdot) tan()函数将无穷区间变换到有限区间上面来,那么对应的变化是
g ( x ) = t a n ( a r c t a n ( T 1 ) + ( x − T 1 ) ⋅ π 2 − a r c t a n ( T 1 ) ( T 2 − T 1 ) ) g(x)=tan(arctan(T_1)+(x-T_1)\cdot \frac{\frac{\pi}{2}-arctan(T_1)}{(T_2-T_1)}) g(x)=tan(arctan(T1)+(xT1)(T2T1)2πarctan(T1))
那么 g ( ⋅ ) : [ T 1 , T 2 ] → [ T 1 , + ∞ ] . g(\cdot):[T_1,T_2]\to[T_1,+\infty]. g():[T1,T2][T1,+].实现了我们的目标。经过复合,我们得到的减函数情形的工资函数为:
S ( t , T 1 , T 2 ) = p 3 ⋅ ( 1 g ( t ) − T 1 + T ′ + 1 p 3 ⋅ S 0 ) S(t,T_1,T_2)=p_3\cdot(\frac{1}{g(t)-T_1+T'}+\frac{1}{p_3}\cdot S_0) S(t,T1,T2)=p3(g(t)T1+T1+p31S0)
实现了 [ T 1 , T 2 ] → [ T 1 , + ∞ ] → [ p 3 T ′ + S 0 , S 0 ] [T_1,T_2]\to[T_1,+\infty] \to[\frac{p_3}{T'}+S_0,S_0] [T1,T2][T1,+][Tp3+S0,S0]的单射递减过程。

如果初始工资为 p 3 ⋅ T 1 p_3\cdot T_1 p3T1,那么可解出 T ′ T' T的值为 T ′ = 1 T 1 − S 0 p 3 . T'=\frac{1}{T_1-\frac{S_0}{p_3}}. T=T1p3S01.

我们假设 p 3 = 100 , T 1 = 12 ( > 10 ) , T 2 = 65 , S 0 = 1000 p_3=100,T1=12(>10),T2=65,S0=1000 p3=100,T1=12(>10),T2=65,S0=1000,则模型曲线如下:

在这里插入图片描述

最后我们工资函数进行一个总结:
S ( t , T 1 , T 2 ) = { 0 ⋅ χ [ 0 , T 1 ] ∪ [ T 2 , + ∞ ] + p 1 ⋅ ( exp ⁡ { k ⋅ T 1 ⋅ ( t − T 1 ) } + T 1 − 1 ) ⋅ χ [ T 1 , T 2 ] , T 1 > 23 p 2 ⋅ ( 0 ⋅ χ [ 0 , T 1 ] ∪ [ T 2 , + ∞ ] + T 1 ⋅ χ [ T 1 , T 2 ] ) , 18 < T 1 ≤ 23 S 0 , 0 < T ≤ 18 S(t,T_1,T_2)=\left\{\begin{array}{ll} 0\cdot \chi_{[0,T_1]\cup[T_2,+\infty]}+ p_1\cdot(\exp\{k\cdot T_1\cdot(t-T_1)\}+T_1 -1)\cdot \chi_{[T_1,T_2]}&,T_1>23\\ p_2\cdot (0\cdot \chi_{[0,T_1]\cup [T_2,+\infty]}+T_1\cdot \chi_{[T_1,T_2]})&, 18<T_1 \le23\\ S_0,0<T\le 18 \end{array}\right. S(t,T1,T2)=0χ[0,T1][T2,+]+p1(exp{kT1(tT1)}+T11)χ[T1,T2]p2(0χ[0,T1][T2,+]+T1χ[T1,T2])S0,0<T18,T1>23,18<T123
我们默认取参数值如下:
p 1 = 200 , p 2 = 160 , p 3 = 100. p_1=200,p_2=160,p_3=100. p1=200,p2=160,p3=100.
S 0 = 1000 , k = 0.005 S_0=1000,k=0.005 S0=1000,k=0.005
(数据没有查阅资料,未必有意义,有相关知识的同学欢迎来加入讨论私聊)


这样,我们能够确定 T 2 T_2 T2时刻的 S S S的值(假设 T 1 T_1 T1给定了)
S ( t , T 1 , T 2 ) = { 200 ⋅ ( exp ⁡ { 1 200 ⋅ T 1 ⋅ ( T 2 − T 1 ) } + T 1 − 1 ) , T 1 > 23 160 ⋅ T 1 , 18 < T 1 ≤ 23 S 0 , 0 < T ≤ 10 S(t,T_1,T_2)=\left\{\begin{array}{ll} 200\cdot(\exp\{\frac{1}{200}\cdot T_1\cdot(T_2-T_1)\}+T_1 -1)&,T_1>23\\ 160\cdot T_1&, 18<T_1 \le23\\ S_0&,0<T\le 10 \end{array}\right. S(t,T1,T2)=200(exp{2001T1(T2T1)}+T11)160T1S0,T1>23,18<T123,0<T10

在函数空间中展示如下图所示:

  1. T 2 = 65 T_2=65 T2=65时:
    在这里插入图片描述
  2. T 2 = 70 T_2=70 T2=70
    在这里插入图片描述

我们能看到,当 T 1 T_1 T1落在 [ 10 , 40 ] [10,40] [10,40](视为具有较好的生育能力的年龄阶段)时候,在退休后会进入完全两个不同的经济状况,这两个经济生活状况被 S ∈ [ 10000 , 40000 ] S\in[10000,40000] S[10000,40000]水平带分割开来。此时,我们就用这个退休时的工资量作为个体老年生活的需求的年均值。

下一个问题就是退休后老人们能享福多少年呢?这里我们假设每个个体的寿命 L L L相同,为80岁。则享福年份退休年限成负相关,我们设享福年份为 Y e a r s   t o   e n j o y = T e Years~to~enjoy=T_e Years to enjoy=Te,则有下列限制关系:
T e + T 2 = L T_e+T_2=L Te+T2=L

之后我们便能够计算不同 T 1 T_1 T1取值的个体的老年生活需求Living needs of the elderly了,我们用 N e N_e Ne来表示。
那么我们通过最终的式子算出我们的第一个指标:
N e = T e ⋅ S ( T 2 ; T 1 , T 2 ) N_e=T_e\cdot S(T_2;T_1,T_2) Ne=TeS(T2;T1,T2)
我们来看一下在 T 2 = 65 T_2=65 T2=65 T 2 = 70 T_2=70 T2=70两种情况下, N e N_e Ne T 1 T_1 T1的变化曲线:

  1. T 2 = 65 T_2=65 T2=65

    在这里插入图片描述

  2. T 2 = 70 T_2=70 T2=70
    在这里插入图片描述
    在这里插入图片描述


下面我们来考虑另外一个相关因素:对孩子生育及抚养所需要承担的成本,我们用符号 C C C来记。

这个成本是怎么计算呢?往往一个家庭在考虑要孩子的时候不仅仅会考虑当前的经济状况,而且会考虑18年内的经济状况,因而这个支出其实要靠积分来进行计算:
C ( T 1 , T 2 , T 3 ) = ∫ T 3 T 3 + 18 p ( t − T 3 ) S ( t , T 1 , T 2 ) d t C(T_1,T_2,T_3)=\int_{T_3}^{T_3+18}p(t-T_3)S(t,T_1,T_2)dt C(T1,T2,T3)=T3T3+18p(tT3)S(t,T1,T2)dt
其中 T 3 T_3 T3是做出决策并执行的时间,而 p ( ⋅ ) p(\cdot) p()是随孩子年龄增长,其成本在个体总工资中所占比重的变化。


最终我们对对孩子生育及抚养所需要承担的成本 C C C个体老年生活的需求 N e N_e Ne进行比较,

  1. C > N e C>N_e C>Ne,个体倾向于选择丁克。
  2. C < N e C<N_e C<Ne,个体倾向于选择生子。

以上模型系由小航乱编,如有雷同,还请见谅!

  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值