阵列天线处理的理论和应用(二)阵列信号处理基础(1)

2.1矩阵代数的相关知识

2.1.1特征值与特征向量

若Ae=\lambdae                                                                                                                               (1)

则称\lambda是矩阵A的特征值,e是对应于\lambda的特征向量。(\lambda,e)为矩阵A的特征对。

2.1.2广义特征值与广义特征向量

若Ae=\lambdaBe                                                                                                                             (2)

则称\lambda是矩阵A相对矩阵B的广义特征值,e是\lambda对应的广义特征值。如果矩阵B非满秩,那么\lambda就可能为任意值。矩阵B为单位阵时,就为普通的特征值问题。

2.1.3矩阵的奇异值分解

奇异值:对于复矩阵A_{m\times n},称A^{H}A的n个特征根\lambda _{i}的算数根\sigma _{i}=\sqrt{\lambda_{i}}\left ( i=1,2,3,\cdots,n \right )为A的奇异值。

奇异值矩阵:若记\sum =diag\left ( \sigma _{1} ,\sigma _{2},\cdots ,\sigma _{r}\right ),其中\sigma _{1} ,\sigma _{2},\cdots ,\sigma _{r}是A的全部非零奇异值,则称m\times n矩阵

S=\begin{bmatrix} \sum & 0\\ 0 & 0 \end{bmatrix}=\begin{bmatrix} \sigma _{1} & & & & & \\ & \ddots & & & & \\ & & \sigma _{r} & & & \\ & & &0 & & \\ & & & & \ddots & \\ & & & & &0 \end{bmatrix}                                                                         (3)

为A的奇异值矩阵。

奇异值分解原理:对于m\times n维的矩阵A,分别存在一个m\times m维酉矩阵U和一个n\times n维酉矩阵V使得A=U\Sigma V^{H}

2.1.4Toeplitz矩阵

定义:具有2n-1个元素的n阶矩阵

A=\begin{bmatrix} a_{0} &a_{-1} & a_{-2}& \cdots & a_{-n+1} \\ a_{1} & a_{0}& a_{-1} & \cdots & a_{-n+2}\\ a_{2}& a_{1} &a_{0} &\cdots & a_{-n+3}\\ \vdots &\vdots & \vdots & \ddots &\vdots \\ a_{n-1}& a_{n-2} & a_{n-3} &\cdots &a_{0} \end{bmatrix}                                                                             (4)

为Toeplitz矩阵,简称T矩阵。T矩阵完全由第一行和第一列的2n-1个元素确定。

应用:数据信息处理过程中(有限元素法,概率统计以及滤波理论等领域)

2.1.5Hankel矩阵

定义:具有以下形式的n+1阶矩阵

\begin{bmatrix} a_{0} &a_{1} &a_{2} & \cdots &a_{n} \\ a_{1}&a_{2} &a_{3} & \cdots & a_{n+1}\\ a_{2} & a_{3} & a_{4} &\cdots &a_{n+2} \\ \vdots & \vdots &\vdots &\ddots &\vdots \\ a_{n}& a_{n+1} &a_{n+2} &\cdots & a_{2n} \end{bmatrix}                                                                                             (5)

为Hankel矩阵或正交对称矩阵。Hankel矩阵完全由第1行和第n列的2n+1个元素确定。

2.1.6Vandermonde矩阵

定义:具有以下形式的m\times n阶矩阵

V=\begin{bmatrix} 1 & 1 &1 & \cdots &1 \\ a_{1}& a_{2} & a_{3} & \cdots & a_{n} \\ a _{1}^{2}& a _{2}^{2} & a _{3}^{2} & \cdots & a _{n}^{2}\\ \cdots& \cdots & \cdots & \ddots & \cdots \\ a _{1}^{m-1}& a _{2}^{m-1} & a _{3}^{m-1} & \cdots &a _{n}^{m-1} \end{bmatrix}                                                                           (6)

为Vandermonde矩阵。

2.1.7Hermitian矩阵

如果矩阵A_{n\times n}满足A=A^{H},则称为Hermitian矩阵。

Hermitian矩阵的性质:

(1)Hermitian矩阵的所有特征值都是实的。

(2)Hermitian矩阵对应于不同特征值的特征向量相互正交。

(3)Hermitian矩阵可分解为A=E\Lambda E=\sum_{i=1}^{n}\xi _{i}e_{i}e_{i}^{H}的形式,这一分解称为谱定理,也就是矩阵A的特征分解定理。其中,\Lambda =diag\left ( \xi _{1} ,\xi _{2},\cdots ,\xi _{n}\right ),E=\left [ e _{1},e _{2},\cdots ,e _{n} \right ]是由特征向量构成的酉矩阵。

2.1.8Kronecker积

定义:p\times q维矩阵A和m\times n维矩阵B的Kronecker积记为

A\otimes B=\begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1q}B\\ a_{21}B& a_{22}B & \cdots & a_{2q}B\\ \vdots & \vdots & \ddots & \vdots \\ a_{p1}B& a_{p2}B& \cdots & a_{pq}B \end{bmatrix}                                                                                  (7)

2.1.9Khatri-Rao积

考虑俩个矩阵A(I\times F)和B(J\times F),它们的Khatri-Rao积A\circ B为一个IJ\times F维矩阵,其定义为:

A\circ B=\begin{bmatrix} a_{1}\otimes b_{1} &, \cdots &,a_{F}\otimes b_{F} \end{bmatrix}                                                                                     (8)

a_{F}为A的第F列。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值