RK3588安装rknn-toolkit-lite2

目录

一、下载rknn-toolkit2包:

二、安装knn-toolkit-lite2

三、测试

(1)分类测试

(2)YOLOv5测试


一、下载rknn-toolkit2包:

sudo git clone https://gitclone.com/github.com/airockchip/rknn-toolkit2

二、安装knn-toolkit-lite2

进入到所在包的位置,然后解压:

unzip rknn-toolkit2-master.zip

进入rknn-toolkit-lite2所在路径:

cd rknn-toolkit2-master/rknn-toolkit-lite2/packages/

安装对应的版本:

pip install rknn_toolkit_lite2-2.0.0b0-cp38-cp38-linux_aarch64.whl

注:这里的架构是aarch64,所以安装rknn-toolkit-lite2,如果是其他的架构选择安装rknn-toolkit2

三、测试

(1)分类测试

cd rknn-toolkit2-master/rknn-toolkit-lite2/examples/resnet18/
python test.py

报错,安装cv2

pip install opencv-python -i https://mirrors.aliyun.com/pypi/simple/
python test.py

再次报错:/usr/lib/librknnrt.so: undefined symbol: rknn_set_core_mask

此时更新rknn_serverlibrknnrt.so

cd rknn-toolkit2-master/rknpu2/runtime/Linux/
sudo cp librknn_api/aarch64/librknnrt.so /usr/lib
sudo cp -r rknn_server/aarch64/usr/bin/. /usr/bin

运行test.py

python test.py

成功!!!

(2)YOLOv5测试

由于上面这个包没有rknn-toolkit-lite2的yolov5测试代码。

下载鲁班猫RK系列板的AI应用代码:

https://gitee.com/LubanCat/lubancat_ai_manual_code

git clone https://gitee.com/LubanCat/lubancat_ai_manual_code

进入yolov5路径:

cd dev_env/rknn_toolkit_lite2/examples/yolov5_inference/

运行:

python test.py

报错:维度的问题

解决方法:打开test.py,添加以下两句代码

再次运行,成功!!!

### RK3588平台上的YOLOv5 Python部署指南 #### 准备工作 为了在RK3588平台上成功运行YOLOv5模型,需先完成环境配置。这包括但不限于安装必要的软件包和工具集。 确保已安装`rknn-toolkit-lite2`,该工具为用户提供板端模型推理的Python接口,极大地方便了基于Python语言的AI应用开发[^2]。此过程与常规Toolkit2安装方法一致。 #### 部署步骤详解 ##### 安装依赖库 通过pip命令来安装所需的Python库,例如OpenCV用于图像处理等辅助功能(如果项目中有额外需求)。对于特定于硬件加速的支持,则依据官方文档指导进行设置。 ##### 转换并加载模型 使用转换脚本将训练好的YOLOv5权重文件转成适用于RKNN的目标格式`.rknn`。具体执行如下所示的操作: ```bash python3 yolov5.py --model_path ../model/yolov5s_relu.rknn --target rk3588 ``` 上述指令会调用指定路径下的YOLOv5 Python脚本来准备适合RK3588架构使用的优化版本模型[^1]。 ##### 编写推理代码 编写一段简单的测试程序来进行对象检测任务验证。下面是一个基本的例子: ```python from rknn.api import RKNN def load_model(model_file): """加载已经转换过的RKNNS模型""" rknn = RKNN() ret = rknn.load_rknn(path=model_file) if ret != 0: print('Load RKNN model failed') exit(ret) ret = rknn.init_runtime(target='rk3588') # 初始化目标设备 if ret != 0: print('Init runtime environment failed') exit(ret) return rknn if __name__ == '__main__': MODEL_PATH = '../model/yolov5s_relu.rknn' rknn_model = load_model(MODEL_PATH) # 进行预测... ``` 这段代码展示了如何利用`rknn-toolkit-lite2`提供的API初始化并加载之前创建的`.rknn`文件到RK3588上做进一步处理。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值