1.安装python的依赖
/home/firefly/Downloads/RK_NPU_SDK_1.5.0/rknn-toolkit2/doc目录下,有一个 requirements_cp38-1.5.0.txt文件,使用下面的命令安装:
pip install -r requirements_cp38-1.5.0.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
2.安装Miniconda
去官网下载miniconda,miniconda 的官方链接如下所示:https://docs.conda.io/en/latest/miniconda.html。进入 miniconda 的网址后,找到 Miniconda3
Linux-aarch64 64-bit,如下图所示:
下载后,拷贝到rk3588上,然后使用 “bash Miniconda3-latest-Linux-x86_64.sh”安装Miniconda,如下图所示:
点击 ENTER后,如下图所示:
按下键盘的“q”键,输入回车和“yes”,等。待安装完成,安装完成如下图所示:
安装完成后,打开新的终端,发现用户名前出现(base),就代表安装成功了,如下图所示:
如果没有,使用命令“conda activate base”,若出现conda没有发现:输入命令“sudo gedit ~/.bashrc”,在最后添加;“export PATH="/home/atk/miniconda3/bin”
进入 /home/atk/miniconda3/etc/profile.d 目录下
输入命令“source conda.sh”
重新输入命令“conda activate base”即可。
3.创建 RKNN 虚拟环境
然后使用以下命令创建名为 rknn 的 python 版本为 3.9 的虚拟环境,
conda create -n rknn python=3.9
然后使用以下命令激活刚刚创建的 rknn 虚拟环境,发现用户名前出现(rknn),证明成功激活了 rknn 虚拟环境。
conda activate rknn
4.安装 RKNN-ToolkitLite 2 软件包
进入下面的目录:
/home/firefly/Downloads/RK_NPU_SDK_1.5.0/rknn-toolkit2/rknn_toolkit_lite2/packages
有个 rknn_toolkit_lite2-1.5.0-cp39-cp39-linux_aarch64.whl 的包,然后使用以下命令安装 RKNN-ToolkitLite 2 软件包,完成安装后会提示successfully.
pip install rknn_toolkit_lite2-1.4.0-cp39-cp39-linux_aarch64.whl -i https://pypi.mirrors.ustc.edu.
cn/simple/
5.安装opencv
由于后续都会使用到 opencv,所以最后还需要安装 opencv。继续使用以下命令安装
opencv:
pip install opencv-python -i Simple Index
至此,RKNN-ToolkitLite 2 的使用环境就搭建完成了
- 使用RKNN-ToolkitLite 2测试resnet:
进入下面的目录,使用命令”python3 ./test.py”运行,结果如下图所示:
/home/firefly/Downloads/RK_NPU_SDK_1.5.0/rknn-toolkit2/rknn_toolkit_lite2/examples/inference_with_lite