洋葱外表皮细胞计数

本文介绍了使用维纳滤波和中值滤波对细胞图像进行处理,以实现细胞计数。通过比较两种滤波方法,发现维纳滤波在无需形态学运算的情况下即可有效分离细胞。中值滤波后配合形态学运算(如腐蚀或开运算)同样能实现良好的细胞分离和计数效果。作者强调图像处理应基于图像元素特征分析,并提供了详细的代码示例展示处理流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先上最后的效果对比图哈哈,我采用了多种滤波方法(中值滤波、直方图统计灰度图然后转换、均值滤波、维纳滤波)最后采用了维纳滤波器。没有采用任何的形态学处理就达到了计数的效果,如果是中值滤波的话在加上形态学运算也能达到理想的细胞计数效果。中值滤波后细胞间存在粘连,腐蚀运算就可以解决,或者使用开运算也行。
图像处理我个人感觉一定要从分析图像的元素特征出发。在这里插入图片描述
图1.1原图
在这里插入图片描述
图1.2维纳滤波后图像
在这里插入图片描述
图1.3维纳滤波标记的细胞数目
在这里插入图片描述
图1.4中值滤波后图像
在这里插入图片描述
图1.5中值滤波标计的细胞数目
代码如下·:

close all
I=imread('细胞图片1.jfif');
imshow(I);title('原图');
I1=rgb2gray(I);
figure;imshow(I1);title('灰度图像');
figure;histogram(I1);
thresh = graythresh(I1); 
thresh
I1=im2bw(I1,thresh );
figure;imshow(I1);title('二值图像');
I1= wiener2(I1,[13 13]);
%I1= medfilt2(I1,[12 12]);
figure;imshow(I1);title('滤波后图像');
se1=strel('disk',2);
I1= imopen(I1,se1);
figure;imshow(I1);title('开运算');
I1=~I1;
[mark_image,num] = bwlabel(I1,4);
%bwlabel 寻找连通区域,    4连通是指,如果像素的位置在其他像素相邻的上、下、左或右,则认为他们是连接着的
%num 表示连通区域的个数
%l是大小和BWing一样的图像数组,里面存放着对bwing图像的标签值(即判定为连通后,在L矩阵中标记出来)
 
%regionprops 介绍
%参考 :https://blog.csdn.net/langb2014/article/details/49886787
%返回值STATS是一个长度为max(L(:))的结构数组,结构数组的相应域定义了每一个区域相应属性下的度量
status=regionprops(mark_image,'BoundingBox');
 
centroid = regionprops(mark_image,'Centroid');


figure;
imshow(mark_image);title('标记后的图像');
for i=1:num  rectangle('position',status(i).BoundingBox,'edgecolor','r');   text(centroid(i,1).Centroid(1,1)-15,centroid(i,1).Centroid(1,2)-15, num2str(i),'Color', 'r') 
end
num
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

通信汪的美好生活

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值