python-Numpy基础:线性代数

线性代数

Numpy 定义了 matrix 类型,使用该 matrix 类型创建的是矩阵对象,它们的加减乘除运算缺省采用矩阵方式计算,因此用法和Matlab十分类似。但是由于 NumPy 中同时存在 ndarray 和 matrix对象,因此用户很容易将两者弄混。这有违 Python 的“显式优于隐式”的原则,因此官方并不推荐在程序中使用 matrix 。在这里,我们仍然用 ndarray 来介绍。

矩阵和向量积

矩阵的定义、矩阵的加法、矩阵的数乘、矩阵的转置与二维数组完全一致,不再进行说明,但矩阵的乘法有不同的表示。

  • numpy.dot(a, b[, out]) 计算两个矩阵的乘积,如果是一维数组则是它们的内积。
import numpy as np

x = np.array([1,2,3,4,5])
y = np.array([2,3,4,5,6])
z = np.dot(x,y)  #  两向量的点积
print(z)

x = np.array([[1,2,3],[3,4,5],[6,7,8]])
y = np.array([[5,4,2],[1,7,9],[0,4,5]])
z= np.dot(x,y)
print(z)
70
[[  7  30  35]
 [ 19  60  67]
 [ 37 105 115]]
  • 注意:

    在线性代数里面讲的维数和数组的维数不同,如线代中提到的n维行向量在 Numpy 中是一维数组,而线性代数中的n维列向量在 Numpy 中是一个shape为(n, 1)的二维数组

矩阵特征值与特征向量
  • numpy.linalg.eig(a) 计算方阵的特征值和特征向量。
  • numpy.linalg.eigvals(a) 计算方阵的特征值。
import numpy as np

x = np.diag([1,2,3])
print(np.linalg.eigvals(x))

a, b = np.linalg.eig(x)   # a为特征值,b为特征向量
print("特征值:")
print(a)
print("特征向量:")
print(b)

for i in range(3):  # 检验特征值与特征向量是否正确
    if np.allclose(a[i] * b[:, i], np.dot(x, b[:, i])):
        print("Right")
    else:
        print("Error")
[1. 2. 3.]
特征值:
[1. 2. 3.]
特征向量:
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
Right
Right
Right
# 判断兑成阵是否为正定阵(特征值是否全部为正)

import numpy as np

A = np.arange(16).reshape(4,4)
print(A)

A = A + A.T  # 将方阵转换为对称阵
print(A)

B = np.linalg.eigvals(A)
print(B)

# 判断是不是所有的特征值都大于0,用到了all函数,显然对称阵不是正定的
if np.all(B > 0):
    print('Yes')
else:
    print('No')

[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]]
[[ 0  5 10 15]
 [ 5 10 15 20]
 [10 15 20 25]
 [15 20 25 30]]
[ 6.74165739e+01 -7.41657387e+00  1.82694656e-15 -1.72637110e-15]
No

矩阵分解

奇异值分解

有关奇异值分解的原理:奇异值分解(SVD)及其应用

  • u, s, v =numpy.linalg.svd(a,full_matrices=True,compute_uv=True,hermitian=False) 奇异值分解

    • a是一个形如(M,N)矩阵
    • full_matrices 的取值是为False或者True,默认值为True,这时u 的大小为(M,M), v 的大小为(N,N)。否则u 的大小为(M,K), v 的大小为(K,N) ,K=min(M,N)。
    • compute_uv 的取值是为False或者True,默认值为True,表示计算u,s,v 。为False的时候只计算s 。
    • 总共有三个返回值u,s,v , u 大小为(M,M), s 大小为(M,N), v 大小为(N,N), a =usv 。
    • 其中s 是对矩阵a 的奇异值分解。s 除了对角元素不为0 ,其他元素都为0 ,并且对角元素从大到小排列。s 中有n 个奇异值,一般排在后面的比较接近0,所以仅保留比较大的r个奇异值。

注:Numpy中返回的v 是通常所谓奇异值分解a=usv’ 中v 的转置。

import numpy as np

A = np.array([[4,11,14],[8,7,-2]])
u,s,vh = np.linalg.svd(A,full_matrices=False)
print(u.shape)
print(u)

print(s.shape)
print(s)
print(np.diag(s))

print(vh.shape)
print(vh)

a = np.dot(u, np.diag(s))
a = np.dot(a, vh)
print(a)
(2, 2)
[[-0.9486833  -0.31622777]
 [-0.31622777  0.9486833 ]]
(2,)
[18.97366596  9.48683298]
[[18.97366596  0.        ]
 [ 0.          9.48683298]]
(2, 3)
[[-0.33333333 -0.66666667 -0.66666667]
 [ 0.66666667  0.33333333 -0.66666667]]
[[ 4. 11. 14.]
 [ 8.  7. -2.]]
import numpy as np

A = np.array([[1,1],[1,-2],[2,1]])
u,s,vh = np.linalg.svd(A, full_matrices=False)
print(u.shape)
print(u)

print(s.shape)
print(np.diag(s))

print(vh.shape)
print(vh)

a = np.dot(u, np.diag(s))
a = np.dot(a, vh)
print(a)
(3, 2)
[[-5.34522484e-01 -9.06988786e-17]
 [ 2.67261242e-01 -9.48683298e-01]
 [-8.01783726e-01 -3.16227766e-01]]
(2,)
[[2.64575131 0.        ]
 [0.         2.23606798]]
(2, 2)
[[-0.70710678 -0.70710678]
 [-0.70710678  0.70710678]]
[[ 1.  1.]
 [ 1. -2.]
 [ 2.  1.]]
QR分解
  • q,r = numpy.linalg.qr(a, mode=‘reduced’) 计算矩阵a 的QR分解。
    • a 是一个(M, N)的待分解矩阵。
    • mode = reduced :返回(M, N)的列向量两两正交的矩阵q ,和(N, N)的三角阵r (Reduced QR分解)。
    • mode = complete :返回(M, M)的正交矩阵q ,和(M, N)的三角阵r (Full QR分解)。
import numpy as np

A = np.array([[2,-2,3],[1,1,1],[1,3,-1]])
q,r = np.linalg.qr(A)
print(q.shape)
print(q)

print(r.shape)
print(r)

print(np.dot(q,r))

a = np.allclose(np.dot(q.T,q),np.eye(3))
print(a)
(3, 3)
[[-0.81649658  0.53452248  0.21821789]
 [-0.40824829 -0.26726124 -0.87287156]
 [-0.40824829 -0.80178373  0.43643578]]
(3, 3)
[[-2.44948974  0.         -2.44948974]
 [ 0.         -3.74165739  2.13808994]
 [ 0.          0.         -0.65465367]]
[[ 2. -2.  3.]
 [ 1.  1.  1.]
 [ 1.  3. -1.]]
True
import numpy as np
A = np.array([[1, 1], [1,-2], [2, 1]])
print(A)
# [[ 1 1]
# [ 1 ‐2]
# [ 2 1]]
q, r = np.linalg.qr(A, mode='complete')
print(q.shape) # (3, 3)
print(q)
# [[‐0.40824829 0.34503278 ‐0.84515425]
# [‐0.40824829 ‐0.89708523 ‐0.16903085]
# [‐0.81649658 0.27602622 0.50709255]]
print(r.shape) # (3, 2)
print(r)
# [[‐2.44948974 ‐0.40824829]
# [ 0. 2.41522946]
# [ 0. 0. ]]
print(np.dot(q, r))
# [[ 1. 1.]
# [ 1. ‐2.]
# [ 2. 1.]]
a = np.allclose(np.dot(q, q.T), np.eye(3))
print(a) # True
[[ 1  1]
 [ 1 -2]
 [ 2  1]]
(3, 3)
[[-0.40824829  0.34503278 -0.84515425]
 [-0.40824829 -0.89708523 -0.16903085]
 [-0.81649658  0.27602622  0.50709255]]
(3, 2)
[[-2.44948974 -0.40824829]
 [ 0.          2.41522946]
 [ 0.          0.        ]]
[[ 1.  1.]
 [ 1. -2.]
 [ 2.  1.]]
True
import numpy as np
A = np.array([[1, 1], [1, -2], [2, 1]])
print(A)
# [[ 1 1]
# [ 1 ‐2]
# [ 2 1]]
q, r = np.linalg.qr(A)
print(q.shape) # (3, 2)
print(q)
# [[‐0.40824829 0.34503278]
# [‐0.40824829 ‐0.89708523]
# [‐0.81649658 0.27602622]]
print(r.shape) # (2, 2)
print(r)
# [[‐2.44948974 ‐0.40824829]
# [ 0. 2.41522946]]
print(np.dot(q, r))
# [[ 1. 1.]
# [ 1. ‐2.]
# [ 2. 1.]]
a = np.allclose(np.dot(q.T, q), np.eye(2))
print(a) # True (说明q为正交矩阵)
[[ 1  1]
 [ 1 -2]
 [ 2  1]]
(3, 2)
[[-0.40824829  0.34503278]
 [-0.40824829 -0.89708523]
 [-0.81649658  0.27602622]]
(2, 2)
[[-2.44948974 -0.40824829]
 [ 0.          2.41522946]]
[[ 1.  1.]
 [ 1. -2.]
 [ 2.  1.]]
True
Cholesky分解
  • L = numpy.linalg.cholesky(a) 返回正定矩阵a 的 Cholesky 分解a = L*L.T ,其中L 是下三角。
import numpy as np

A = np.array([[1,1,1,1],[1,3,3,3],[1,3,5,5],[1,3,5,7]])
print(np.linalg.eigvals(A))

L = np.linalg.cholesky(A)
print(L)

print(np.dot(L,L.T))
[13.13707118  1.6199144   0.51978306  0.72323135]
[[1.         0.         0.         0.        ]
 [1.         1.41421356 0.         0.        ]
 [1.         1.41421356 1.41421356 0.        ]
 [1.         1.41421356 1.41421356 1.41421356]]
[[1. 1. 1. 1.]
 [1. 3. 3. 3.]
 [1. 3. 5. 5.]
 [1. 3. 5. 7.]]

范数和其他数字

矩阵的范数
  • numpy.linalg.norm(x, ord=None, axis=None, keepdims=False) 计算向量或者矩阵的范数。

根据ord 参数的不同,计算不同的范数:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8UXcPUYC-1606658551684)(attachment:image.png)]

# 求向量的范数
import numpy as np

x = np.array([1,2,3,4])
print(np.linalg.norm(x,ord=1))
print(np.sum(np.abs(x)))

print(np.linalg.norm(x,ord=2))
print(np.sum(np.abs(x)**2)**0.5)

print(np.linalg.norm(x,ord=-np.inf))
print(np.min(np.abs(x)))

print(np.linalg.norm(x,ord=np.inf))
print(np.max(np.abs(x)))
10.0
10
5.477225575051661
5.477225575051661
1.0
1
4.0
4
# 求矩阵的范数
import numpy as np

A = np.array([[1,2,3,4],[2,3,4,8],[1,3,5,7],[3,4,7,11]])
print(np.linalg.norm(A,ord=1))
print(np.sum(A,axis=0))

print(np.linalg.norm(A,ord=2))
print(np.max(np.linalg.svd(A,compute_uv=False)))

print(np.linalg.norm(A,ord=np.inf))
print(np.max(np.sum(A,axis=1)))

print(np.linalg.norm(A,ord='fro'))
print(np.sqrt(np.trace(np.dot(A.T, A))))
30.0
[ 7 12 19 30]
19.996728247255966
19.996728247255966
25.0
25
20.049937655763422
20.049937655763422
方阵的行列式

numpy.linalg.det(a) 计算行列式。

import numpy as np

x = np.array([[1,2],[3,4]])
print(np.linalg.det(x))
-2.0000000000000004
矩阵的秩
  • numpy.linalg.matrix_rank(M, tol=None, hermitian=False) 返回矩阵的秩。
import numpy as np

I = np.eye(3)
print(I)

r = np.linalg.matrix_rank(I)
print(r)

I[1,1] = 0
r = np.linalg.matrix_rank(I)
print(r)
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
3
2
矩阵的迹
  • numpy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None) 方阵的迹就是主对角元素之和。
import numpy as np

x = np.array([[1,2,3],[3,4,5],[6,7,8]])
y = np.array([[5,4,2],[1,7,9],[0,4,5]])
print(np.trace(x))
print(np.trace(np.transpose(x)))

print(np.trace(x+y))
print(np.trace(x) + np.trace(y))
13
13
30
30

解方程和逆矩阵

逆矩阵(inverse matrix)
  • 设 A 是数域上的一个 n 阶矩阵,若在相同数域上存在另一个 n 阶矩阵 B,使得: AB=BA=E (E 为单位矩阵),则我们称 B 是 A 的逆矩阵,而 A 则被称为可逆矩阵。
  • numpy.linalg.inv(a) 计算矩阵a 的逆矩阵(矩阵可逆的充要条件: det(a) != 0 ,或者a 满秩)。
import numpy as np

A = np.array([[1,-2,1],[0,2,-1],[1,1,-2]])
A_det = np.linalg.det(A)
A_inverse = np.linalg.inv(A)
x = np.allclose(np.dot(A,A_inverse),np.eye(3))
print(x)
x = np.allclose(np.dot(A_inverse,A),np.eye(3))
print(x)

A_companion = A_inverse * A_det # 求A的伴随矩阵
print(A_companion)
True
True
[[-3.00000000e+00 -3.00000000e+00  3.33066907e-16]
 [-1.00000000e+00 -3.00000000e+00  1.00000000e+00]
 [-2.00000000e+00 -3.00000000e+00  2.00000000e+00]]
求解线性方程组
  • numpy.linalg.solve(a, b) 求解线性方程组或矩阵方程。
import numpy as np

A = np.array([[1,2,1],[2,-1,3],[3,1,2]])
b = np.array([7,7,18])
x = np.linalg.inv(A).dot(b)
print(x)

x = np.linalg.inv(A).dot(b)
print(x)

y = np.allclose(np.dot(A,x),b)
print(y)
[ 7.  1. -2.]
[ 7.  1. -2.]
True
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值