Pytorch获取中间层输出

本文介绍了如何在PyTorch中使用register_hook()函数来获取深度学习模型的中间层输出。通过为特定模块设置回调函数,可以在前向传播过程中截取所需层的数据。在实践中,建议先确定层名以精确提取,代码示例展示了如何添加钩子以及如何处理多层输出的情况。注意,此方法每次模型预测都会保存一次数据,因此要获取所有样本的输出,需要逐个进行预测。
摘要由CSDN通过智能技术生成

钩子截流:

        这种方式是在前向传播进行中还没得到最终输出时,将所需要的中间层输出从前向数据流中提取出来,利用到了pytorch中的register_hook()函数。这一函数可以为模型中的某个module设置一个回调函数,形如:
hook(module, input, output) -> None or modified output
        函数的输入值为module的名字、module的输入和输出。通过前置定义一个数组,在hook()函数中将对应module的输入或输出加入该数组以实现中间层提取。实际过程中建议先打印所有层的名字以做到精确提取。给出代码如下:

网络:


class net1(nn.Module):
    def __init__(self):
        super(net1, self).__init__()
 
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, bias=False),
            nn.Conv2d(3, 6, kernel_size=3, stride=1, padding=0, bias=False),
        )
        self.conv2 = nn.Sequential(
            nn.C
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值