将数据包装成一个图数据结构(torch_geometric)

import torch
from torch_geometric.data import Data

x = torch.tensor([[0, 1], [2, 3], [4, 5]], dtype=torch.float)  # 节点特征矩阵(三个节点,每个节点两个特征)
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]], dtype=torch.long)  # 边索引矩阵(四条边,每条边包含两个节点索引)
y = torch.tensor([0, 1, 0], dtype=torch.long)  # 每个节点的目标标签

train_mask = torch.tensor([True, False, True])  # 训练掩膜(三个节点)
test_mask = torch.tensor([False, True, False])  # 测试掩膜(三个节点)

data = Data(x=x, edge_index=edge_index, y=y, train_mask=train_mask, test_mask=test_mask)
print(data)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值