基于卷积神经网络的高光谱图像分类详细教程(含python代码)

目录

一、背景

二、基于卷积神经网络的代码实现

1)建立卷积神经网络模型

2)训练函数代码

3)全图可视化

三、项目代码


一、背景

卷积神经网络(Convolutional Neural Networks, CNNs)在处理高光谱图像分类任务时,展现出了卓越的性能。高光谱图像因其丰富的光谱信息而具有极高的空间分辨率,能够捕捉到物体在不同波段上的细微差异。CNNs通过其特有的卷积层、池化层和全连接层结构,能够自动提取图像中的空间和光谱特征,有效地捕捉到高光谱数据中的复杂模式。在卷积层中,局部感受野和权值共享机制使得网络能够学习到图像的局部特征,而池化层则有助于减少参数数量,提高特征的不变性。通过层层堆叠的非线性变换,CNNs能够构建出深层次的特征表示,从而实现对高光谱图像中不同地物类别的高精度分类。此外,通过引入迁移学习、数据增强和正则化等技术,可以进一步提高模型的泛化能力和分类性能,使得卷积神经网络成为高光谱图像分析领域的一项重要工具。

深度学习是机器学习的一个分支,它通过构建多层的神经网络来模拟人脑处理信息的方式,从而实现对复杂数据的高效处理和模式识别。在深度学习中,2D卷积是一种核心操作,尤其在图像处理和计算机视觉领域中扮演着至关重要的角色。

2D卷积操作涉及一个卷积核(或滤波器),它在输入数据(如图像)上滑动,计算卷积核与输入数据局部区域的点积,从而生成输出特征图。这个过程可以捕捉到输入数据的空间层次结构,即从低级特征(如边缘和角点)到高级特征(如纹理和对象部分)的逐步抽象。

二、基于卷积神经网络的代码实现

下面我们以IP数据集为例子进行展开讲解。

1)建立卷积神经网络模型

import torch.nn as nn

class CNN_2D(nn.Module):
    def __init__(self, num_classes):
        super(CNN_2D, self).__init__()
        # 2D卷积块
        self.block_2D = nn.Sequential(
            nn.Conv2d(
                in_channels=30,out_channels=64,kernel_size=(3, 3),stride=(2,2),padding=(1,1)),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3, 3),stride=(2,2),padding=(1,1)),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3, 3),stride=(2,2),padding=(1,1)),
            nn.ReLU(inplace=True)
        )

        # 全连接层
        self.classifier = nn.Sequential(
            nn.Linear(in_features=16*256,out_features=512
            ),
            nn.Dropout(p=0.4),
            nn.Linear(in_features=512,out_features=256
            ),
            nn.Dropout(p=0.4),
            nn.Linear(in_features=256,out_features=num_classes))

    def forward(self, x):
        y = self.block_2D(x)
        y = y.reshape(y.shape[0], -1)
        y = self.classifier(y)
        return y

2)训练函数代码

1、导入相关包

首先导入训练需要用到的相关函数和包

from utils import applyPCA,createImageCubes,splitTrainTestSet,reports
import scipy.io as sio
from net import CNN_2D
import torch
import numpy as np
import os
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import time

2、数据集加载

将下载的数据加载进内存,便于后续处理

X = sio.loadmat('./data/Indian_pines.mat')['indian_pines']
y = sio.loadmat('./data/Indian_pines_gt.mat')['indian_pines_gt']

3、PCA降维

由于数据的波段非常大,这里利用PCA进行数据降维。降维后数据维度得到减少,从220个波段降维到30个波段。

X_pca = applyPCA(X, numComponents=pca_components)

4、数据集的样本划分与标签分配

根据数据标签和数据,对其进行样本采样,并划分成训练集和验证集。这里以窗口为25的大小,训练集和测试集的占比分别为20%的训练,80%的验证。

X_pca, y = createImageCubes(X_pca, y, windowSize=patch_size)
Xtrain, Xtest, ytrain, ytest = splitTrainTestSet(X_pca, y, test_ratio)

5、转数据为torch张量

首先定义样本加载函数:

# 加载数据函数
class TrainDS(torch.utils.data.Dataset):
    def __init__(self):
        self.len = Xtrain.shape[0]
        self.x_data = torch.FloatTensor(Xtrain)
        self.y_data = torch.LongTensor(ytrain)
    def __getitem__(self, index):
        # 根据索引返回数据和对应的标签
        return self.x_data[index], self.y_data[index]
    def __len__(self):
        # 返回文件数据的数目
        return self.len

class TestDS(torch.utils.data.Dataset):
    def __init__(self):
        self.len = Xtest.shape[0]
        self.x_data = torch.FloatTensor(Xtest)
        self.y_data = torch.LongTensor(ytest)
    def __getitem__(self, index):
        # 根据索引返回数据和对应的标签
        return self.x_data[index], self.y_data[index]
    def __len__(self):
        # 返回文件数据的数目
        return self.len

然后将数据以批量的方式加载进来:

trainset = TrainDS()
testset  = TestDS()
train_loader = torch.utils.data.DataLoader(dataset=trainset, batch_size=128, shuffle=True)
test_loader  = torch.utils.data.DataLoader(dataset=testset,  batch_size=128, shuffle=False)

6、自动选择GPU还是CPU训练

# 使用GPU训练
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 网络放到GPU上
net = CNN_2D(num_classes=class_num).to(device)

7、设置相关的损失、优化函数以及迭代次数

EPOCH = 10
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

8、开始训练

训练过程中,保存验证集最优结果的权值,以便后续使用。

for epoch in range(EPOCH):
    for i, (inputs, labels) in enumerate(train_loader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

9、绘制损失和准确率曲线

将训练过程中的损失和准确率保存,并进行绘制,查看他们之间的关系。

10、对验证集进行评估,获取最终结果

classification, confusion, oa, each_acc, aa, kappa, names = reports(ytest, y_pred_test)
print(classification)
print("混淆矩阵\n",confusion)
print("kapap:", kappa)
print("aa:", aa)
print("oa:", oa)
print("训练时间:",train_time_1-train_time_0,"验证时间:",test_time_1-test_time_0)

3)全图可视化

采用逐点预测的方式

for i in range(height):
    for j in range(width):
        image_patch = X[i:i+patch_size, j:j+patch_size, :]
        image_patch = image_patch.reshape(1,image_patch.shape[0],image_patch.shape[1], image_patch.shape[2])
        X_test_image = torch.FloatTensor(image_patch.transpose(0, 3, 1, 2)).to(device)
        prediction = net(X_test_image)
        prediction = np.argmax(prediction.detach().cpu().numpy(), axis=1)
        outputs[i][j] = prediction+1

预测结果比较不错,精度99%以上了。

三、项目代码

本项目的代码通过以下链接下载:基于卷积神经网络的高光谱图像分类代码

  • 26
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是使用卷积神经网络CNN)进行高光谱图像分类Python 代码示例: ```python import numpy as np import pandas as pd import tensorflow as tf from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense, Conv2D, Flatten, MaxPooling2D # 读取数据 data = pd.read_csv('data.csv') X = data.iloc[:, :-1].values y = data.iloc[:, -1].values # 数据预处理 X = np.reshape(X, (X.shape[0], 1, 16, 16)) # 转换为4D张量 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 建立CNN模型 model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(1, 16, 16))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, kernel_size=(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 model.fit(X_train, y_train, epochs=10, validation_data=(X_test, y_test)) # 评估模型 score = model.evaluate(X_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) ``` 其中,`data.csv` 是高光谱图像数据,每行表示一个图像,前256列为图像像素值,最后一列为分类标签。代码中使用 `train_test_split` 函数将数据分为训练集和测试集,使用 `Conv2D`、`MaxPooling2D`、`Dense` 等层构建卷积神经网络,并使用 `fit` 函数训练模型,使用 `evaluate` 函数评估模型性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值