因为需要使用无约束非线性优化问题,所以想用拟牛顿法中的BFGS算法,在此记录一下资料收集的过程。
1. 参考链接
对于优化算法的介绍,可以参考这篇博文,博主写的比较清楚。
常见的几种最优化方法(梯度下降法、牛顿法、拟牛顿法、共轭梯度法等)
对于scipy中一些优化算法的介绍,可以参考官方文档。
scipy.optimize
2.实践
使用不同的方法,求解最小值问题,可以使用👇
scipy.optimize.minimize
1. 函数介绍
满足初级使用,需要了解以下👇几个关键参数,其余细节的参数设置,还是需要对于优化问题更加深入了解才能更好使用。
-
函数,待优化的目标函数。函数的自变量是一个一维向量,因变量应当是一个浮点值。
-
自变量初始化,优化过程的起点,自变量的初始值。
-
优化器,其默认值为BFGS,足见其适用性。
-
tolerance和options。这里提到了tolerance可以在options中定义。而options中可以定