【python】scipy包中的BFGS算法

因为需要使用无约束非线性优化问题,所以想用拟牛顿法中的BFGS算法,在此记录一下资料收集的过程。

1. 参考链接

对于优化算法的介绍,可以参考这篇博文,博主写的比较清楚。
常见的几种最优化方法(梯度下降法、牛顿法、拟牛顿法、共轭梯度法等)
对于scipy中一些优化算法的介绍,可以参考官方文档。
scipy.optimize

2.实践

使用不同的方法,求解最小值问题,可以使用👇
scipy.optimize.minimize

1. 函数介绍

满足初级使用,需要了解以下👇几个关键参数,其余细节的参数设置,还是需要对于优化问题更加深入了解才能更好使用。

  • 函数,待优化的目标函数。函数的自变量是一个一维向量,因变量应当是一个浮点值。
    在这里插入图片描述

  • 自变量初始化,优化过程的起点,自变量的初始值。
    在这里插入图片描述

  • 优化器,其默认值为BFGS,足见其适用性。
    在这里插入图片描述

  • tolerance和options。这里提到了tolerance可以在options中定义。而options中可以定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值