slowfast_ghm

import torch
import torch.nn as nn
import torch.nn.functional as F

from mmaction.core.bbox import bbox_target

try:
    from mmdet.models.builder import HEADS as MMDET_HEADS
    mmdet_imported = True
except (ImportError, ModuleNotFoundError):
    mmdet_imported = False
# class F_BCE(nn.Module):
#     def __init__(self, pos_weight=1, reduction='mean'):
#         super(F_BCE, self).__init__()
#         self.pos_weight = pos_weight
#         self.reduction = reduction

#     def forward(self, logits, target):
#         # logits: [N, *], target: [N, *]
#         logits = F.sigmoid(logits)

#         loss = - self.pos_weight * target * (1-logits)**2 * torch.log(logits) - \
#                (1 - target) * logits**2 * torch.log(1 - logits)
        
#         if self.reduction == 'mean':
#             loss = loss.mean()
#         elif self.reduction == 'sum':
#             loss = loss.sum()
#         return loss

# class DSCLoss(nn.Module):
 
 
#     def __init__(self, alpha: float = 1.0, smooth: float = 1.0, reduction: str = "mean"):
#         super().__init__()
#         self.alpha = alpha
#         self.smooth = smooth
#         self.reduction = reduction
 
 
#     def forward(self, logits, targets):
#         targets = targets.type(torch.int64)
#         probs = torch.softmax(logits, dim=1)
#         probs = torch.gather(probs, dim=1, index=targets.unsqueeze(1))
 
 
#         probs_with_factor = ((1 - probs) ** self.alpha) * probs
#         loss = 1 - (2 * probs_with_factor + self.smooth) / (probs_with_factor + 1 + self.smooth)
 
 
#         if self.reduction == "mean":
#             return loss.mean()

class GHM_Loss(nn.Module):
    def __init__(self, bins=10, alpha=0.5):
        '''
        bins: split to n bins
        alpha: hyper-parameter
        '''
        super(GHM_Loss, self).__init__()
        self._bins = bins
        self._alpha = alpha
        self._last_bin_count = None

    def _g2bin(self, g):
        return torch.floor(g * (self._bins - 0.0001)).long()

    def _custom_loss(self, x, target, weight):
        raise NotImplementedError

    def _custom_loss_grad(self, x, target):
        raise NotImplementedError

    def forward(self, x, target):
        g = torch.abs(self._custom_loss_grad(x, target)).detach()

        bin_idx = self._g2bin(g)

        bin_count = torch.zeros((self._bins))
        for i in range(self._bins):
            bin_count[i] = (bin_idx == i).sum().item()

        N = (x.size(0) * x.size(1))

        if self._last_bin_count is None:
            self._last_bin_count = bin_count
        else:
            bin_count = self._alpha * self._last_bin_count + (1 - self._alpha) * bin_count
            self._last_bin_count = bin_count

        nonempty_bins = (bin_count > 0).sum().item()

        gd = bin_count * nonempty_bins
        gd = torch.clamp(gd, min=0.0001)
        beta = N / gd

        return self._custom_loss(x, target, beta[bin_idx])

class BBoxHeadAVA(nn.Module):
    """Simplest RoI head, with only two fc layers for classification and
    regression respectively.

    Args:
        temporal_pool_type (str): The temporal pool type. Choices are 'avg' or
            'max'. Default: 'avg'.
        spatial_pool_type (str): The spatial pool type. Choices are 'avg' or
            'max'. Default: 'max'.
        in_channels (int): The number of input channels. Default: 2048.
        num_classes (int): The number of classes. Default: 81.
        dropout_ratio (float): A float in [0, 1], indicates the dropout_ratio.
            Default: 0.
        dropout_before_pool (bool): Dropout Feature before spatial temporal
            pooling. Default: True.
        topk (int or tuple[int]): Parameter for evaluating multilabel accuracy.
            Default: (3, 5)
        multilabel (bool): Whether used for a multilabel task. Default: True.
            (Only support multilabel == True now).
    """

    def __init__(
            self,
            temporal_pool_type='avg',
            spatial_pool_type='max',
            in_channels=2048,
            # The first class is reserved, to classify bbox as pos / neg
            num_classes=81,
            dropout_ratio=0,
            dropout_before_pool=True,
            topk=(3, 5),
            multilabel=True,
            loss_cfg = None):
        super(BBoxHeadAVA, self).__init__()
        assert temporal_pool_type in ['max', 'avg']
        assert spatial_pool_type in ['max', 'avg']
        self.temporal_pool_type = temporal_pool_type
        self.spatial_pool_type = spatial_pool_type

        self.in_channels = in_channels
        self.num_classes = num_classes

        self.dropout_ratio = dropout_ratio
        self.dropout_before_pool = dropout_before_pool

        self.multilabel = multilabel

        if topk is None:
            self.topk = ()
        elif isinstance(topk, int):
            self.topk = (topk, )
        elif isinstance(topk, tuple):
            assert all([isinstance(k, int) for k in topk])
            self.topk = topk
        else:
            raise TypeError('topk should be int or tuple[int], '
                            f'but get {type(topk)}')
        # Class 0 is ignored when calculaing multilabel accuracy,
        # so topk cannot be equal to num_classes
        assert all([k < num_classes for k in self.topk])

        # Handle AVA first
        assert self.multilabel

        in_channels = self.in_channels
        # Pool by default
        if self.temporal_pool_type == 'avg':
            self.temporal_pool = nn.AdaptiveAvgPool3d((1, None, None))
        else:
            self.temporal_pool = nn.AdaptiveMaxPool3d((1, None, None))
        if self.spatial_pool_type == 'avg':
            self.spatial_pool = nn.AdaptiveAvgPool3d((None, 1, 1))
        else:
            self.spatial_pool = nn.AdaptiveMaxPool3d((None, 1, 1))

        if dropout_ratio > 0:
            self.dropout = nn.Dropout(dropout_ratio)

        self.fc_cls = nn.Linear(in_channels, num_classes)
        self.debug_imgs = None
        
#         self.f_bce = F_BCE()
#         self.BN = nn.BatchNorm1d(6)

        self.ghm_loss = GHM_Loss()
#         self.BN = nn.BatchNorm1d(6)

    def init_weights(self):
        nn.init.normal_(self.fc_cls.weight, 0, 0.01)
        nn.init.constant_(self.fc_cls.bias, 0)

    def forward(self, x):
        if self.dropout_before_pool and self.dropout_ratio > 0:
            x = self.dropout(x)

        x = self.temporal_pool(x)
        x = self.spatial_pool(x)

        if not self.dropout_before_pool and self.dropout_ratio > 0:
            x = self.dropout(x)

        x = x.view(x.size(0), -1)
        cls_score = self.fc_cls(x)
        # We do not predict bbox, so return None
        return cls_score, None

    def get_targets(self, sampling_results, gt_bboxes, gt_labels,
                    rcnn_train_cfg):
        pos_proposals = [res.pos_bboxes for res in sampling_results]
        neg_proposals = [res.neg_bboxes for res in sampling_results]
        pos_gt_labels = [res.pos_gt_labels for res in sampling_results]
        cls_reg_targets = bbox_target(pos_proposals, neg_proposals,
                                      pos_gt_labels, rcnn_train_cfg)
        return cls_reg_targets

    def recall_prec(self, pred_vec, target_vec):
        """
        Args:
            pred_vec (tensor[N x C]): each element is either 0 or 1
            target_vec (tensor[N x C]): each element is either 0 or 1

        """
        correct = pred_vec & target_vec
        # Seems torch 1.5 has no auto type conversion
        recall = correct.sum(1) / (target_vec.sum(1).float()+ 1e-6)
        prec = correct.sum(1) / (pred_vec.sum(1) + 1e-6)
        return recall.mean(), prec.mean()

    def multilabel_accuracy(self, pred, target, thr=0.5):
        pred = pred.sigmoid()
        pred_vec = pred > thr
        # Target is 0 or 1, so using 0.5 as the borderline is OK
        target_vec = target > 0.5
        recall_thr, prec_thr = self.recall_prec(pred_vec, target_vec)

        recalls, precs = [], []
        for k in self.topk:
            _, pred_label = pred.topk(k, 1, True, True)
            pred_vec = pred.new_full(pred.size(), 0, dtype=torch.bool)

            num_sample = pred.shape[0]
            for i in range(num_sample):
                pred_vec[i, pred_label[i]] = 1
            recall_k, prec_k = self.recall_prec(pred_vec, target_vec)
            recalls.append(recall_k)
            precs.append(prec_k)
        return recall_thr, prec_thr, recalls, precs


    def loss(self,
             cls_score,
             bbox_pred,
             rois,
             labels,
             label_weights,
             bbox_targets=None,
             bbox_weights=None,
             reduce=True):
        losses = dict()
        if cls_score is not None:
            # Only use the cls_score
            #labels = labels[:, 1:]
            # pos_inds = torch.sum(labels, dim=-1) > 0
            # cls_score = cls_score[pos_inds, 1:]
            # labels = labels[pos_inds]
            labels = labels[:, 1:]
            cls_score = cls_score[:, 1:]
            
#             cls_score = self.BN(cls_score)

#             f_bce_loss = self.f_bce
#             losses['loss_action_cls'] = f_bce_loss(cls_score, labels)
            
            d_ghm_loss = self.ghm_loss
            losses['loss_action_cls'] = d_ghm_loss(cls_score, labels) 
            
            #bce_loss = F.binary_cross_entropy_with_logits
            #losses['loss_action_cls'] = bce_loss(cls_score, labels)
            recall_thr, prec_thr, recall_k, prec_k = self.multilabel_accuracy(
                cls_score, labels, thr=0.5)
            losses['recall@thr=0.5'] = recall_thr
            losses['prec@thr=0.5'] = prec_thr
            for i, k in enumerate(self.topk):
                losses[f'recall@top{k}'] = recall_k[i]
                losses[f'prec@top{k}'] = prec_k[i]
        return losses

    def get_det_bboxes(self,
                       rois,
                       cls_score,
                       img_shape,
                       flip=False,
                       crop_quadruple=None,
                       cfg = None):

        # might be used by testing w. augmentation
        if isinstance(cls_score, list):
            cls_score = sum(cls_score) / float(len(cls_score))

        assert self.multilabel

        scores = cls_score.sigmoid() if cls_score is not None else None
        bboxes = rois[:, 1:]
        assert bboxes.shape[-1] == 4

        # First reverse the flip
        img_h, img_w = img_shape
        if flip:
            bboxes_ = bboxes.clone()
            bboxes_[:, 0] = img_w - 1 - bboxes[:, 2]
            bboxes_[:, 2] = img_w - 1 - bboxes[:, 0]
            bboxes = bboxes_

        # Then normalize the bbox to [0, 1]
        bboxes[:, 0::2] /= img_w
        bboxes[:, 1::2] /= img_h

        def _bbox_crop_undo(bboxes, crop_quadruple):
            decropped = bboxes.clone()

            if crop_quadruple is not None:
                x1, y1, tw, th = crop_quadruple
                decropped[:, 0::2] = bboxes[..., 0::2] * tw + x1
                decropped[:, 1::2] = bboxes[..., 1::2] * th + y1

            return decropped

        bboxes = _bbox_crop_undo(bboxes, crop_quadruple)
        return bboxes, scores


if mmdet_imported:
    MMDET_HEADS.register_module()(BBoxHeadAVA)



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值