optimizer优化器详解

优化器在机器学习中扮演关键角色,根据损失函数的梯度调整模型参数。SGD、Adam和Adagrad是常见的优化算法,每种都有特定的应用场景。在PyTorch中,这些优化器可用于更新模型权重,并通过设置超参数控制学习过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在机器学习中,优化器(optimizer)是一种用于更新模型参数以最小化训练误差的算法。它可以将损失函数的梯度作为输入,并根据该梯度调整模型参数的值。常见的优化器算法包括随机梯度下降(SGD)、Adam、Adagrad等。

优化器的选择对于模型的性能和收敛速度有很大影响,不同的优化器可能适用于不同的模型和数据集。因此,在训练模型时需要根据情况选择合适的优化器,并调整其超参数以达到最佳的效果。

优化器是一个对象,它封装了训练期间更新模型参数的细节。它决定如何根据计算出的梯度和用户指定的超参数更新模型的权重。

PyTorch 中最常用的优化器是:

torch.optim.SGD:随机梯度下降优化器

torch.optim.Adam:自适应矩估计优化器

torch.optim.Adagrad:自适应梯度优化器

每个优化器都有自己的一组超参数,可以对其进行修改以控制学习率、动量、权重衰减和优化过程的其他方面。

要使用优化器,您通常会创建优化器类的实例并将模型参数和所需的超参数传递给它。例如:

optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

一旦你定义了你的优化器,你就在计算损失函数的梯度后调用其step()方法。这将执行一个优化步骤,并根据所选算法更新模型参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知我Deja_Vu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值