一文看懂---通义千问Qwen3系列全家桶

国人等待了一个通宵的Qwen3发布了,实测下来,效果确实非常不错,本地部署成本低,云端访问速度快。

一、Qwen3模型家族概览

通义实验室正式发布新一代大语言模型Qwen3,包含多个规格的模型版本,涵盖从超大规模到轻量级模型,满足不同场景需求:

1、两大MoE(混合专家)模型:

  • Qwen3-235B-A22B:超大规模旗舰级模型,总参数235B,每次推理激活22B参数。
  • Qwen3-30B-A3B: 小型旗舰模型,总参数30B,每次推理激活3B参数。

2、六款密集模型(Dense Models):

  • 参数范围从0.6B到32B,覆盖低资源设备到高性能计算场景。

二、核心竞争力分析

1、 性能表现

  • 对标行业顶级模型: 在代码生成、数学计算、通用能力测试中,Qwen3与DeepSeek-R1、OpenAI的o1/o3-mini、xAI的Grok-3、Google的Gemini-2.5-Pro等竞品模型相比具有竞争力。
  • 小模型超越前辈: Qwen3-4B(仅40亿参数)的性能可媲美前代Qwen2.5-72B-Instruct(720亿参数),效率显著提升。
  • MoE优势凸显: Qwen3-30B-A3B以10倍于QwQ-32B的激活参数,实现更强性能。

img

img

2、 技术架构亮点

混合专家模型(MoE):

  • Qwen3-235B-A22B和Qwen3-30B-A3B采用MoE架构,通过动态激活不同的"专家"子网络,平衡算力消耗与效果。

  • 例如:Qwen3-235B-A22B拥有128个专家模块,每次仅激活8个(约6%)即可完成任务。

长文本支持: 多数模型支持128K上下文长度,适用于复杂文档处理、长对话历史分析等场景。

三、模型参数与架构细节

img

img

技术解读:

- 注意力机制优化: 高层模型使用更多查询头(Q)和更少键值头(KV),增强并行计算能力。

- 专家模块设计: MoE模型通过128个专家模块组合实现高效推理,显著降低硬件门槛。

- 上下文扩展性: 多数模型支持128K长度,远超传统8K/32K限制,适应代码生成、学术论文分析等长序列任务。

四、开放策略与生态支持

  1. 开源许可:
  • 所有密集模型和MoE模型均采用Apache 2.0协议,允许商业用途且无需贡献回溯代码。
  1. 成本低:
  • 中小企业:利用Qwen3-4B或Qwen3-30B-A3B在低成本GPU上部署。

  • 大型企业:使用Qwen3-235B-A22B构建垂直领域超大规模系统。

五、实测本地部署

在Mac M4 pro + 64G内存的配置下,跑Qwen3-30B-A3B(FP16)版本,使用通用内存62.41G

img

案例1:狼人杀网页游戏开发

在网页上使用满血版本的旗舰版Qwen3-235B-A22B,给它一个任务:

帮我写一个单页面的狼人杀游戏,用户是通过鼠标点击来跟网页交互,其他角色使用AI自动生成和运行。页面游戏要可以访问并且运行

img

第一次回复中生成的网页代码中游戏交互有问题,让它改正之后,真的就可以运行了,但是因为所有玩家的投票决策并没有经过AI分析,因此每一轮投票结果有点乱,但一次性能做出一个可运行的完整逻辑的游戏页面,还是比以前用工作流要去搭建这套游戏体系简单的多。

img

案例2:

用藏师傅经典的网页生成提示词,将Qwen3模型的官方说明页面丢给它,让它生成一个具备美感的页面。U1S1,藏师傅的提示词就是好用。

https://chat.qwen.ai/s/d4a38cbd-2ab9-4fff-a953-80d66caada80?fev=0.0.85

img

Qwen3今天只是开始,在未来:

通义团队表示将持续优化Qwen3系列,计划推出:

  • 更强推理能力的迭代版本(如逻辑链强化)
  • 面向特定领域的垂直模型(医疗、金融等)
  • 跨模态扩展(图像/视频理解能力)

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值