人工智能你应该知道的冷知识——人工智能的发展时间轴

☞☞☞点击查看更多优秀Python博客☜☜☜

   Hello大家好,我是你们的朋友JamesBin这篇文章介绍一下人工智能,人工智能也是最近这几年才发展起来的,我首先来看一下人工智能 的发展历史吧!

在这里插入图片描述
  这张图是人工智能发展情况概览。人工智能的发展经历了很长时间的历史积淀

1950年,阿兰·图灵就提出了图灵测试机,大意是将人和机器放在一个小黑屋里与屋外的人对话,如果屋外的人分不清对话者是人类还是机器,那么这台机器就拥有像人一样的智能。

时间人物事件意义
1633Rene Descartes发表著作《论人》提出灵魂存在于大脑的松果体中
1714Gottfried Wilhelm Leibniz《单子论》一切知识都能通过理性思考获得。发现微积分,并开发了一套更为适用的记号方法。
1739David Hume《人性论》将人类思维分为印象和思想
1781Immanuel Kant《纯粹理性批判》世界存在两种世界:一个是能为人类身体所感知的经验世界,一个是自在世界。
1796F.J.Gall发展了颅相学
1821Charles Babbage通用计算机构想
1861P.P.Broca命名布罗卡区
1870Gustav Fritsch发现大脑对侧控制原则
1873Camillo Golgi发现了“染色”的黑色反应
1874C.Wernicke命名韦尼克区建立了行为障碍与大脑特定区域损伤之间的关系
1872C.R.Darwin《人类和动物对情绪的表达》第一次涉及人类情绪的科学研究
1873Wihelm Wundt发表著作《心理生理学原理》确立实验内省法,被后人称为实验心理学之父
1879Gottlob Frege概念演算–一种按算术语言构成的思维符号语言弗雷格扩大逻辑学的内容,创造了“量化”逻辑,是分析哲学的鼻祖。
1889S.R.Cajal神经系统是由细胞构成的
1885Herman Ebbinghaus《记忆:对实验心理学的一项贡献》提出艾宾浩斯曲线。
1890William James《心理学原理》被称为心理学之父
1896Edward Bradford Titchener《心理学大纲》创立构造主义
1897Ivan Pavlov《关于主要消化腺功能的演讲》提出条件反射定律。
1900S.S.Freud《梦的解析》创立精神分析学派
1901Edmund Husserl发表著作《逻辑研究》首次提出了现象学的基本原理,奠定了现象学描述分析方法的基础
1909K.Broadmann发表了大脑皮质的比较研究
1911Edward Thorndike《动物智力》提出联结主义
1912M.Wetheimer《运动知觉的实验研究》格式塔心理学重要里程碑
1913Bertrand Russell & Alfred North Whitehead《数学原理》是20世纪科学的重大成果,被誉为是“人类心灵的最高成就之一”
1916Ferdinand de Saussure《普通语言学教程》提出符号的能指和所指
1921Ludwig Josef Johann Wittgenstein《逻辑哲学论》20世纪最难懂的著作之一
1924John Watson《行为主义》开创了行为主义学派
1924Hans BergerEEG(脑电图)首次在人中使用
1927Martin Heidegger《存在于时间》20世纪存在主义的创始人
1929Wolfgang Kohler《格式塔心理学》格式塔心理学创始人之一
1932Edward Tolman《动物和人类的目的性行为》提出了人存在认知地图
1934Carl.Jung《原型与集体无意识》提出集体无意识,并运用词语联想法
1934SirKarl Raimund Popper《科学发现的逻辑》标志着西方科学哲学最重要的学派――批判理性主义的形成。
1936Turing发表《可计算数》提出图灵机的设想
1936Alfred Jules Ayer发表《语言、真理与逻辑》在书中提出有意识的人类及无意识的机器之间的区别,从而成为了逻辑实证主义在英文世界的代言人
1938B.F.Skinner《有机体的行为:实验分析》详细介绍了实验方法,包括著名的斯金纳箱。
1940sS.M.Ulam & John von Neumann提出蒙特卡洛方法在金融工程学,宏观经济学,计算物理学等领域应用广泛。
1943Warren McCulloch &Walter Pitts出版了《神经活动中固有的思维的逻辑运算》一书提出了MP神经元模型
1943Abraham Maslow发表《人类动机理论》提出需求层次理论
1946Mauchly &EckertENIAC(第一台通用计算机)为AI的研究提供了物质基础
1946John von Neumann提出冯诺伊曼架构计算机发展史上的一个里程碑
1948Nobert Wiener《控制论》为人工智能领域指明了研究的方向
1948Claude.E.Shannon《通信的数学理论》现代信息论研究的开端
1949D.O.Hebb发表著作《行为的组织:一种神经心理理论》提出了突触学习的模型,这个模型后来被称为“Hebb定律
1950Turing发表《计算机器与智能》提出了图灵测试
1951Wilder Penfield《人类大脑皮质》绘制出大脑皮层与人体之间的对应图
1955Noam.Chomsky发表著作《句法结构》极大程度撼动了行为主义的主导地位,提出了通用语法结构
1956John McCarthy创立人工智能一词
1956达特茅斯会议展开人工智能诞生的标志
1956Newell & Simon & shaw逻辑理论家可以进行数学命题证明的软件
1956G.A.Miller《神奇的数字》首次提出记忆容量为5-9.极大程度撼动了行为主义的根基。
1957Roland Barthes《神话学》语言就是肌肤
1957B.Millner& W.Scoville发表了对H.M 的病例的分析发现记忆可分为长时与短时记忆
1958Frank Rosenblatt发表《感知器:脑的组织和信息存储的概率模型》提出了感知器模型打开了研究人工神经网络的大门
1958John McCarthy发明了LISP(表处理)语言成为人工智能的得力研究工具
1958Leonard E. Baum etc研究前向后向算法(Baum-Welch)HMM 学习问题的一个近似的解决方法
1958Donald Broadbent《知觉与沟通》新认知心理学发展里程碑
1960Newell&Simon&shaw通用问题求解机解决多种类型的数学难题
1960B.Widrow& Ted Hoff建立ADALINE算法
1964Joseph Weizenbaum开发了一个叫Eliza的机器人实现了计算机与人功过文本进行交流
1965Edward Feigenbaum.etc研发专家系统DENDRAL第一套有效进行工作的专家系统
1965Gordon Moore提出摩尔定律这一定律揭示了信息技术进步的速度
1967Paul MacLean将大脑分为三个部分
1968Walter Mischel发表著作《人格和测量》提出的人格理论震惊世界,个体与其所处环境的动态交互过程是对其行为的最佳预测指标
1969Seymour pappert& Mavin Minsky出版了《知觉》一书认为神经网络的容量是有限的直接导致了神经网络研究的将近二十年的长期低潮
1970T.Winogard开发了SHRDLU系统该系统可以部分理解语言
1971R.Shepard& Metzler设计了心理旋转实验为大脑隐形加工过程提供了一种革命性的方法
1972SRI(斯坦福国际研究所)研发机器人Shakey首台采用了人工智能学的移动机器人
1972Hubert Dreyfus发表著作《计算机不能做什么》很大程度打击了人们对人工智能领域的积极性
1972Endel Tulving发表著作《记忆的组织》将长时记忆分为语义记忆和情景记忆
1975F.Holland发表著作《自然与人工系统适应调节》介绍遗传算法
1976Joseph Weizenbaum发表了《计算机能力和人类推理》书中指明了人工智能研究人员应当对他们的研究带来的结果担负起应有的责任
1976N.J.Nilsson & Allen Newell etc提出物理符号系统假设企图建立人工智能的理论体系
1976John.R.Anderson提出ACT-R框架人类认知结构
1976Richard Dawkings发表著作《自私的基因》指出个体经过与他人的长期互动发展出自己的行为倾向
1977Grossberg提出ART网络
1977Albert Bandura发表《社会学习理论》大部分人类行为都是通过模仿习得的
1978Hebert A.Simon获得了诺贝尔经济学奖“有限理性”理论对人工智能领域的决策和问题解决等程序有着重要的指导意义
1979Daniel Kahneman提出前景理论发现人们基于经验解决问题时存在很大问题。
1980John Searle提出了思想“中文屋”引起了极大的争议和讨论热潮
1981Roger W.Sperry获得诺贝尔奖裂脑实验证实大脑中可能有两个意志在活动
1981Gordon Bower发表著作《情绪和记忆》提出情绪和事件是一起被存储在记忆重的
1982Newell etc《统一化的认知理论》研发SOAR软件
1982John Hopfield《具有集体计算能力的神经网络和实际系统》提出了一种具有联想记忆能力的新型神经网络,后被称为“霍普菲尔德网络”
1982Teuvo.Kohonen发表了《自组织映射》介绍了SOM算法,是一种简单而有效的无指导学习算法
1983T.Sejnowski& G.Hinton提出了"隐单元"的概念,并且研制出了Boltzmann机
1983福岛邦彦构造出了可以实现联想学习的"认知机
1983B.Libet etc设计实验证明准备电位的出现要早于意识到动作意图的时间
1984Douglas Lenat开启大百科全书项目使人工智能的应用能够以类似人类推理的方式工作
1985DTI(弥散张量成像)
1986Geoffrey.E.Hinton& David E.Rumelhart &James L.McClelland出版《并行分布式处理:认知的微细构造探索》重新提出了简明有效的误差反传算法(即BP算法)
1986Rumelhart提出了EBP算法解决了MLP的权重问题
1986Paul Smolensky提出了RBM(限制性波尔玆曼)模型
1987Marvin Minsky出版著作《思维社会》向人们描述了大脑中各种不同层次水平的“智能主体”
1987D.C.McClelland发表著作《人类的动机》提出三种核心动机驱动个体做出行动
1987Nileson提出了CP神经网络
1988L.O.Chua提出了CNN神经网络
1990fMRI出现
1991Richard Stanley Lazarus发表《情绪与记忆》个体的思维先于情绪或生理唤出的出现
1994Steven.Pinker发表著作《语言本能》提出语言是本能的观点
1995Vladmir Vapnik etc提出了支持向量机算法可以分析数据,识别模式,用于分类和回归分析
1995M.R.Endsley提出态势感知模型
1996G.Rizzolatti发现了猴脑中的镜像神经元
1997DeepBlue(IBM)公司国际象棋击败卡斯帕罗夫
1997Sepp Hochreiter & Jürgen Schmidhuber提出长短时记忆算法(LSTM)
1998A.Clark& D. Chalmers提出了外脑假说
1998M.Botvinick& J.Cohen设计了著名的橡胶手实验
2003Paul Ekman发表《情绪的解析》提出了情绪的六大类型
2004黄广斌提出了ELM算法
2005Ray Kurzwei出版《奇点将至》2045年电脑全面超越人脑
2006G.E.Hinton发表著作《深层置信网络的快速算法》提出DBNS神经网络
2006Geoffrey.E.Hinton & Lecun etc提出深度学习概念
2006Richard Stanley Lazarus发表著作《情绪的法则》提出情绪本质是无意识过程。
2007J.Lichtman& J.Sanes开发了脑虹技术
2008Daniel Dennett《意识的解释》本书是心智哲学甚至当代哲学中最重要的著作之一,全方位地探索意识现象
2009美国国立卫生研究院人脑连接组计划启动
2011Watson(IBM公司)参加“危险边缘”,打败两位人类冠军。
2012Google X实验室采用“神经系统”识别出一只猫
2013Standford 大学成功的让老鼠的大脑完全透明
2016AlphaGo(Google DeepMind)围棋击败李世石

以上表格仅作为学习笔记使用,如有侵权请联系删除
表格来源:本文分享自微信公众号 - 新智元(AI_era)
本文来自:微信公众号【人机与认知实验室】
如有侵权请联系删除
原始发表时间:2020-03-04

在这里插入图片描述

  • 17
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 21
    评论
⼈⼯智能实践:TensorFlow笔记学习(⼀)——⼈⼯智能概述 概 述 ⼀、 基本概念 1、什么是⼈⼯智能 ⼈⼯智能的概念:机器模拟⼈的意识和思维 重要⼈物:艾伦·麦席森·图灵(Alan Mathison Turing) ⼈物简介:1912年6⽉23⽇-1954年6⽉7⽇,英国数学家、逻辑学家,被称为计算机科学之⽗,⼈⼯智能之⽗。 相关事件: (1)1950年在论⽂《机器能思考吗?》中提出了图灵测试,⼀种⽤于判定机器是否具有智能的试验⽅法:提问者和回答者隔开,提问者 通过⼀些装置(如键盘)向机器随意提问。多次测试,如果有超过30%的提问者认为回答问题的是⼈⽽不是机器,那么这台机器就通过测 试,具有了⼈⼯智能。也就是⼯智能的概念:"⽤机器模拟⼈的意识和思维"。 (2)图灵在论⽂中预测:在2000年,会出现通过图灵测试具备⼈⼯智能的机器。然⽽直到2014年6⽉,英国雷丁⼤学的聊天程序才成功 冒充了13岁男孩,通过了图灵测试。这⼀事件⽐图灵的预测晚了14年。 (3)在2015年11⽉ science杂志封⾯新闻报道,机器⼈已经可以依据从未见过的⽂字中的⼀个字符,写出同样风格的字符,说明机器已 经具备了迅速学习陌⽣⽂字的创造能⼒。 消费级⼈⼯智能产品:国外(1)⾕歌Assistant (2)微软Cortana (3)苹果Siri (4)亚马逊Alexa 国内(1)阿⾥的天猫精灵 (2)⼩⽶的⼩爱同学 ⼈⼯智能先锋: (1)GeoffreyHinton:多伦多⼤学的教授,⾕歌⼤脑多伦多分 布负责⼈,是⼈⼯智能领域的⿐祖,他发表了许多让神经⽹络得以应⽤的论⽂,激活了整个⼈⼯智能领域。他还培养了许多⼈⼯智能的⼤ 家。⽐如LeCun就是他的博⼠后。 (2)Yann LeCun:纽约⼤学的教授,Facebook⼈⼯智能研究室负责⼈,他改进 了卷积神经⽹路算法,使卷积神经⽹络具有了⼯程应⽤价值,现在卷积神经⽹络依旧是计算机视觉领域最有效的模型之⼀。 (3)Yoshua Bengio:蒙特利尔⼤学的教授,现任微软公司战略顾问,他推动了循环神经⽹路算法的发展,使循环神经⽹络得到⼯程应 ⽤,⽤循环神经⽹络解决了⾃然语⾔处理中的问题。 2、什么是机器学习 机器学习的概念:机器学习是⼀种统计学⽅法,计算机利⽤已有数据得出某种模型,再利⽤此模型预测结果。 特点:随经验的增加,效果会变好。 简单模型举例:决策树模型 预测班车到达时间问题描述: 每天早上七点半,班车从A地发往B地,到达B 地的时间如何准确预测? 如果你第⼀次乘坐班车,你的预测通常不太准。⼀周之后,你⼤概能预测出班车 8:00左右到达B地;⼀个⽉之后,随着经验的增加,你还 会知道,周⼀常堵车,会晚10分钟,下⾬常堵车,会晚20分钟。于是你画出了如下的⼀张树状图,如果是周⼀,还下了⾬,班车会8:30到 达;如果不是周⼀,也没有下⾬,班车会8:00到达。 机器学习和传统计算机运算的区别: 传统计算机是基于冯诺依曼结构,指令预先存储。 运⾏时,CPU从存储器⾥逐⾏读取指令,按部就班逐⾏执⾏预先安排好的指令。 其特点是,输出结果确定,因为先⼲什么,后⼲什么都已经提前写在指令⾥了。 机器学习三要素:数据、算法、算⼒ 3、什么是深度学习 深度学习的概念:深层次神经⽹络,源于对⽣物脑神经元结构的研究。 ⼈脑神经⽹络:随着⼈的成长,脑神经⽹络是在渐渐变粗变壮。 ⽣物学中的神经元:下图左侧有许多⽀流汇总在⼀起,⽣物学中称这些⽀流叫做树突。树突具有接受刺激并将冲动传⼊细胞体的功能,是神 经元的输⼊。这些树突汇总于细胞核⼜沿着⼀条轴突输出。轴突的主要功能是将神经冲动由胞体传⾄其他神经元,是神经元的输出。⼈脑便 是由860亿个这样的神经元组成,所有的思维意识,都以它为基本单元,连接成⽹络实现的。 计算机中的神经元模型:1943年,⼼理学家McCulloch和数学家Pitts参考了⽣物神经元的结构,发表了抽象的神经元模型MP。神经元模 型是⼀个包含输⼊,输出与计算功能的模型。输⼊可以类⽐为神经元的树突,输出可以类⽐为神经元的轴突,计算可以类⽐为细胞核。 4、⼈⼯智能 Vs 机器学习 Vs 深度学习 ⼈⼯智能,就是⽤机器模拟⼈的意识和思维。 机器学习,则是实现⼈⼯智能的⼀种⽅法,是⼈⼯智能的⼦集。 深度学习,就是深层次神经⽹络,是机器学习的⼀种实现⽅法,是机器学习的⼦集。 ⼆、 神经⽹络的发展历史(三起两落) 第⼀次兴起:1958年,⼈们把两层神经元⾸尾相接,组成单层神经⽹络,称做感知机。感知机成了⾸个可以学习的⼈⼯神经⽹络。引发了 神经⽹络研究的第⼀次兴起。 第⼀次寒冬:1969年,这个领域的权威学者 Minsky ⽤数学公式证明了只有单层神经⽹络的感知机⽆法对异或逻辑进⾏分类,Minsky 还 指出要想解决异或可分问题

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值