yolov5与网络通信的结合
此篇博客记录在yolov5的实际应用过程中,使用socket网络编程,实现主程序给yolov5检测程序发送图片,yolov5检测程序接收图片进行目标检测并将目标信息发送回主程序的功能。
##1. predict.py程序
该程序由yolov5 detect.py修改而来,作为一个接口,可接收已被读取的numpy格式的图片(原detect.py的输入是直接接收摄像头的数据或是指定图片的路径)。此程序放在detect.py同一路径下。
import io
import numpy as np
import cv2
import torch
from PIL import Image
from numpy import random
'''
代码:由YOLOv5自带的detect.py 改编
'''
from utils.plots import Annotator, colors, save_one_box
from models.experimental import attempt_load
from utils.general import check_img_size, non_max_suppression, scale_coords, \
set_logging
from utils.torch_utils import select_device
from utils.plots import Colors
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
shape = img.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better test mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] !