数学基础知识 ——(1)高等数学

一 、导数

1.1 导数定义:

导数和微分的概念

f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} f(x0)=Δx0limΔxf(x0+Δx)f(x0)

或者:

f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} f(x0)=xx0limxx0f(x)f(x0)

1.2 左右导数导数的几何意义和物理意义

函数 f ( x ) f(x) f(x) x 0 x_0 x0​处的左、右导数分别定义为:
左导数: f − ′ ( x 0 ) = lim ⁡ Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 − f ( x ) − f ( x 0 ) x − x 0 , ( x = x 0 + Δ x ) f^{\prime}_{-}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0^{-}} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=\lim _{x \rightarrow x_{0}^{-}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}},\left(x=x_{0}+\Delta x\right) f(x0)=Δx0limΔxf(x0+Δx)f(x0)=xx0limxx0f(x)f(x0),(x=x0+Δx)

右导数: f + ′ ( x 0 ) = lim ⁡ Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 f^{\prime}_{+}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0^{+}} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=\lim _{x \rightarrow x_{0}^{+}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} f+(x0)=Δx0+limΔxf(x0+Δx)f(x0)=xx0+limxx0f(x)f(x0)

1.3 函数的可导性与连续性之间的关系

  • Th1: 函数 f ( x ) f(x) f(x) x 0 x_{0} x0 处可微 ⇔ f ( x ) \Leftrightarrow f(x) f(x) x 0 x_{0} x0 处可导
  • Th2: 若函数在点 x 0 x_{0} x0 处可导,则 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 处连续, , , , 反之则不成立。即函数连续不一定可导。
  • Th3: f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f(x0) 存在 ⇔ \Leftrightarrow f − ′ ( x 0 ) = f + ′ ( x 0 ) f^{\prime}_{-}\left(x_{0}\right)=f^{\prime}_{+}\left(x_{0}\right) f(x0)=f+(x0)
    在这里插入图片描述
    如上图所示,函数连续但不可导。且x=0处左右导数不相等。

1.4 四则运算法则

设函数 u = u ( x ) , v = v ( x ) u=u(x), v=v(x) u=u(x),v=v(x) )在点 x x x 可导则

  • ( 1 ) ( u ± v ) ′ = u ′ ± v ′ (1)(u \pm v)^{\prime}=u^{\prime} \pm v^{\prime} (1)(u±v)=u±v
  • ( 2 ) ( u v ) ′ = u v ′ + v u ′ (2)(u v)^{\prime}=u v^{\prime}+v u^{\prime} (2)(uv)=uv+vu
  • ( 3 ) ( u v ) ′ = v u ′ − u v ′ v 2 ( v ≠ 0 ) (3)\left(\frac{u}{v}\right)^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}(v \neq 0) (3)(vu)=v2vuuv(v=0)

1.5 基本导数与微分表

y = c y=c y=c (常数) y ′ = 0 y^{\prime}=0 y=0
y = x α ( α  为实数  ) y=x^{\alpha}(\alpha \text { 为实数 }) y=xα(α 为实数 ) y ′ = α x α − 1 y^{\prime}=\alpha x^{\alpha-1} y=αxα1
y = a x y=a^{x} y=ax y ′ = a x ln ⁡ a y^{\prime}=a^{x} \ln a y=axlna 特例: ( e x ) ′ = e x \left(e^{x}\right)^{\prime}=e^{x} (ex)=ex
y = log ⁡ a x y=\log _{a} x y=logax y ′ = 1 x ln ⁡ a y^{\prime}=\frac{1}{x \ln a} y=xlna1 特例: ( ln ⁡ x ) ′ = 1 x (\ln x)^{\prime}=\frac{1}{x} (lnx)=x1
y = sin ⁡ x y=\sin x y=sinx y ′ = cos ⁡ x y^{\prime}=\cos x y=cosx
y = cos ⁡ x y=\cos x y=cosx y ′ = − sin ⁡ x y^{\prime}=-\sin x y=sinx
y = tan ⁡ x y=\tan x y=tanx y ′ = 1 cos ⁡ 2 x = sec ⁡ 2 x y^{\prime}=\frac{1}{\cos ^{2} x}=\sec ^{2} x y=cos2x1=sec2x
y = cot ⁡ x y=\cot x y=cotx y ′ = − 1 sin ⁡ 2 x = − csc ⁡ 2 x y^{\prime}=-\frac{1}{\sin ^{2} x}=-\csc ^{2} x y=sin2x1=csc2x
y = sec ⁡ x y=\sec x y=secx y ′ = sec ⁡ x tan ⁡ x y^{\prime}=\sec x \tan x y=secxtanx
y = csc ⁡ x y=\csc x y=cscx y ′ = − csc ⁡ x cot ⁡ x y^{\prime}=-\csc x \cot x y=cscxcotx
y = arcsin ⁡ x y=\arcsin x y=arcsinx y ′ = 1 1 − x 2 y^{\prime}=\frac{1}{\sqrt{1-x^{2}}} y=1x2 1
y = arccos ⁡ x y=\arccos x y=arccosx y ′ = − 1 1 − x 2 y^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} y=1x2 1
y = arctan ⁡ x y=\arctan x y=arctanx y ′ = 1 1 + x 2 y^{\prime}=\frac{1}{1+x^{2}} y=1+x21
y = arccot ⁡ x y=\operatorname{arccot} x y=arccotx y ′ = − 1 1 + x 2 y^{\prime}=-\frac{1}{1+x^{2}} y=1+x21
y = s h x y=s h x y=shx y ′ = c h x y^{\prime}=c h x y=chx
y = c h x y=c h x y=chx y ′ = s h x y^{\prime}=s h x y=shx

1.6 复合函数,反函数,隐函数以及参数方程所确定的函数的微分法

(1) 反函数的运算法则: 设 y = f ( x ) y=f(x) y=f(x) 在点 x x x 的某邻域内单调连续, 在点 x x x 处可导且 f ′ ( x ) ≠ 0 , f^{\prime}(x) \neq 0, f(x)=0, 则其反函数在点 x x x 所对应的 y y y 处可导, 并且有 d y d x = 1 d x \frac{d y}{d x}=\frac{1}{d x} dxdy=dx1
(2) 复合函数的运算法则:若 μ = φ ( x ) \mu=\varphi(x) μ=φ(x) 在点 x x x 可导,而 y = f ( μ ) y=f(\mu) y=f(μ) 在对应点 μ ( μ = φ ( x ) ) \mu(\mu=\varphi(x)) μ(μ=φ(x)) 可导,则复合函数 y = f ( φ ( x ) ) y=f(\varphi(x)) y=f(φ(x)) 在点 x x x 可导,且 y ′ = f ′ ( μ ) ⋅ φ ′ ( x ) y^{\prime}=f^{\prime}(\mu) \cdot \varphi^{\prime}(x) y=f(μ)φ(x)
(3) 隐函数导数 d y d x \frac{d y}{d x} dxdy 的求法一般有三种方法

  • 1)方程两边对x求导,要记住y是x的函数, 则y的函数是x的复合函数.例如 1 y , y 2 , ln ⁡ y , e y \frac{1}{y}, y^{2}, \ln y, e^{y} y1,y2,lny,ey 等均是 x x x 的复合函数. 对 x x x 求导应按复合函数连锁法则做.

  • 2 ) 公式法.由 F ( x , y ) = 0 F(x, y)=0 F(x,y)=0 d y d x = − F ′ x ( x , y ) F ′ y ( x , y ) \frac{d y}{d x}=-\frac{F^{\prime} x(x, y)}{F^{\prime} y(x, y)} dxdy=Fy(x,y)Fx(x,y) 其中, F x ′ ( x , y ) , F y ′ ( x , y ) F_{x}^{\prime}(x, y), F_{y}^{\prime}(x, y) Fx(x,y),Fy(x,y) 分别表示 F ( x , y ) F(x, y) F(x,y) x x x y y y 的偏导数

  • 3)利用微分形式不变性,参考复合函数求导

1.7 常用高阶导数公式

( a x ) ( n ) = a x ln ⁡ n a ( a > 0 ) ( e x ) ( n ) = e x \left(a^{x}\right)^{(n)}=a^{x} \ln ^{n} a \quad(a>0) \quad\left(e^{x}\right)^{(n)}=e^{x} (ax)(n)=axlnna(a>0)(ex)(n)=ex
( sin ⁡ k x ) ( n ) = k n sin ⁡ ( k x + n ⋅ π 2 ) (\sin k x)^{(n)}=k^{n} \sin \left(k x+n \cdot \frac{\pi}{2}\right) (sinkx)(n)=knsin(kx+n2π)
( cos ⁡ k x ) ( n ) = k n cos ⁡ ( k x + n ⋅ π 2 ) (\cos k x)^{(n)}=k^{n} \cos \left(k x+n \cdot \frac{\pi}{2}\right) (coskx)(n)=kncos(kx+n2π)
( x m ) ( n ) = m ( m − 1 ) ⋯ ( m − n + 1 ) x m − n \left(x^{m}\right)^{(n)}=m(m-1) \cdots(m-n+1) x^{m-n} (xm)(n)=m(m1)(mn+1)xmn
( ln ⁡ x ) ( n ) = ( − 1 ) ( n − 1 ) ( n − 1 ) ! x n (\ln x)^{(n)}=(-1)^{(n-1)} \frac{(n-1) !}{x^{n}} (lnx)(n)=(1)(n1)xn(n1)!
莱布尼兹公式:若 u ( x ) , v ( x ) u(x), v(x) u(x),v(x) n n n 阶可导, 则 ( u v ) ( n ) = ∑ i = 0 n c n i u ( i ) v ( n − i ) , (u v)^{(n)}=\sum_{i=0}^{n} c_{n}^{i} u^{(i)} v^{(n-i)}, (uv)(n)=i=0ncniu(i)v(ni), 其中 u ( 0 ) = u , v ( 0 ) = v u^{(0)}=u, v^{(0)}=v u(0)=u,v(0)=v

二、 微分中值定理 f ′ ( x 0 ) = 0 f^{\prime}\left(x_{0}\right)=0 f(x0)=0

微分中值定理是一系列中值定理总称

2.1 费马定理

若函数 f ( x ) f(x) f(x) 满足条件:
(1) 函数 f ( x ) f(x) f(x) x 0 x_{0} x0 的某邻域内有定义, 并且在此邻域内恒有 f ( x ) ≤ f ( x 0 ) f(x) \leq f\left(x_{0}\right) f(x)f(x0) f ( x ) ≥ f ( x 0 ) f(x) \geq f\left(x_{0}\right) f(x)f(x0)
(2) f ( x ) f(x) f(x) x 0 x_{0} x0 处可导,则有 f ′ ( x 0 ) = 0 f^{\prime}\left(x_{0}\right)=0 f(x0)=0
在这里插入图片描述

2.2 罗尔定理

设函数 f ( x ) f(x) f(x) 满足条件:
(1)在闭区间[ ( a , b ] (a, b] (a,b] 上连续;
(2)在 ( a , b ) (a, b) (a,b) 内可导;
(3) f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)
则在 ( a , b ) (a, b) (a,b) 内一存在个 ξ \xi ξ 使 f ′ ( ξ ) = 0 f^{\prime}(\xi)=0 f(ξ)=0

罗尔定理其实就是拉格朗日中值定理的一种特例

2.3 拉格朗日中值定理

设函数 f ( x ) f(x) f(x) 满足条件:
(1)在 [ a , b ] [a, b] [a,b] 上连续
(2)在 ( a , b ) (a, b) (a,b) 内可导;
则在 ( a , b ) (a, b) (a,b) 内一存在个 ξ \xi ξ 使 f ( b ) − f ( a ) b − a = f ′ ( ξ ) \frac{f(b)-f(a)}{b-a}=f^{\prime}(\xi) baf(b)f(a)=f(ξ)
这个定理的几何意义就是,至少存在一点的切线与端点的连线平行;物理意义是,至少存在一点的速度与平均速度相等
在这里插入图片描述

2.4 柯西中值定理

设函数 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 满足条件:
(1) 在 [ a , b ] [a, b] [a,b] 上连续;
(2) 在 ( a , b ) (a, b) (a,b) 内可导且 f ′ ( x ) , g ′ ( x ) f^{\prime}(x), g^{\prime}(x) f(x),g(x) 均存在, 且 g ′ ( x ) ≠ 0 g^{\prime}(x) \neq 0 g(x)=0

则在 ( a , b ) (a, b) (a,b) 内存在一个 ξ \xi ξ使 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)

几何意义: https://zhuanlan.zhihu.com/p/47436090

三、 极限

3.1 洛必达法则

法则 I ( 0 0 \frac{0}{0} 00):设函数 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 满足条件:
lim ⁡ x → x 0 f ( x ) = 0 , lim ⁡ x → x 0 g ( x ) = 0 \quad \lim _{x \rightarrow x_{0}} f(x)=0, \lim _{x \rightarrow x_{0}} g(x)=0 xx0limf(x)=0,xx0limg(x)=0
f ( x ) , g ( x )  在  x 0  的邻域内可导,  (在  x 0  处可除外)  ) \left.f(x), g(x) \text { 在 } x_{0} \text { 的邻域内可导, } \text { (在 } x_{0} \text { 处可除外) }\right) f(x),g(x)  x0 的邻域内可导 ( x0 处可除外) g ′ ( x ) ≠ 0 ; lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) g^{\prime}(x) \neq 0;\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} g(x)=0;xx0limg(x)f(x)存在(或等于 ∞ \infty

则: lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} xx0limg(x)f(x)=xx0limg(x)f(x)

法则 I ′ ( 0 0 ) I^{\prime}(\frac{0}{0}) I(00) 设函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)满足条件:
lim ⁡ x → ∞ f ( x ) = 0 , lim ⁡ x → ∞ g ( x ) = 0 \lim _{x \rightarrow \infty} f(x)=0, \lim _{x \rightarrow \infty} g(x)=0 xlimf(x)=0,xlimg(x)=0
存在一个 X > 0 X>0 X>0,当 ∣ x ∣ > X |x|>X x>X时, f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 可导,且 g ′ ( x ) ≠ 0 ; lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) g^{\prime}(x) \neq 0 ; \lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} g(x)=0;xx0limg(x)f(x)存在(或等于 ∞ \infty )。

则: lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} xx0limg(x)f(x)=xx0limg(x)f(x)

法则 Π ( ∞ ∞ ) \Pi\left(\frac{\infty}{\infty}\right) Π()设函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)满足条件:
lim ⁡ x → x 0 f ( x ) = ∞ , lim ⁡ x → x 0 g ( x ) = ∞ \lim _{x \rightarrow x_{0}} f(x)=\infty, \lim _{x \rightarrow x_{0}} g(x)=\infty xx0limf(x)=,xx0limg(x)=.
f ( x ) , g ( x ) f(x),g(x) f(x),g(x) x 0 {x}_{0} x0​ 的邻域内可导(在 x 0 {x}_{0} x0​处可除外)且 g ′ ( x ) ≠ 0 ; lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) g^{\prime}(x) \neq 0 ; \lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} g(x)=0;xx0limg(x)f(x)存在(或等于 ∞ \infty )。

则: lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} xx0limg(x)f(x)=xx0limg(x)f(x) .

同理法则 Π ′ ( ∞ ∞ ) \Pi^{\prime}\left(\frac{\infty}{\infty}\right) Π()可以仿照法则 I ′ ( 0 0 ) I^{\prime}(\frac{0}{0}) I(00)型写出

四、 泰勒公式

4.1 一般形式

设函数 f ( x ) f(x) f(x)在点 x 0 {x}_{0} x0​处的某邻域内具有 n + 1 n+1 n+1阶导数,则对该邻域内异于 x 0 {x}_{0} x0的任意点 x x x,在 x 0 {x}_{0} x0​与 x x x之间至少存在一个 ξ \xi ξ,使得:
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2 !} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}+R_{n}(x) f(x)=f(x0)+f(x0)(xx0)+2!1f(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn(x)

其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1) !}\left(x-x_{0}\right)^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1
称为 f ( x ) f(x) f(x)在点 x 0 {x}_{0} x0​处的 n n n阶泰勒余项。

4.2 麦克劳林公式

x 0 = 0 {x}_{0}=0 x0=0,则 n n n阶泰勒公式变为麦克劳林公式为:
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + R n ( x ) f(x)=f(0)+f^{\prime}(0) x+\frac{1}{2 !} f^{\prime \prime}(0) x^{2}+\cdots+\frac{f^{(n)}(0)}{n !} x^{n}+R_{n}(x) f(x)=f(0)+f(0)x+2!1f(0)x2++n!f(n)(0)xn+Rn(x)

其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1) !} x^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)xn+1 ξ 在 0 与 x \xi 在0与x ξ0x之间.

4.3 常用五种函数在 x 0 = 0 {x}_{0}=0 x0=0处的泰勒公式

(1) e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + x n + 1 ( n + 1 ) ! e ξ e^{x}=1+x+\frac{1}{2 !} x^{2}+\cdots+\frac{1}{n !} x^{n}+\frac{x^{n+1}}{(n+1) !} e^{\xi} ex=1+x+2!1x2++n!1xn+(n+1)!xn+1eξ
= 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + o ( x n ) =1+x+\frac{1}{2 !} x^{2}+\cdots+\frac{1}{n !} x^{n}+o\left(x^{n}\right) =1+x+2!1x2++n!1xn+o(xn)
(2) sin ⁡ x = x − 1 3 ! x 3 + ⋯ + x n n ! sin ⁡ n π 2 + x n + 1 ( n + 1 ) ! sin ⁡ ( ξ + n + 1 2 π ) \sin x=x-\frac{1}{3 !} x^{3}+\cdots+\frac{x^{n}}{n !} \sin \frac{n \pi}{2}+\frac{x^{n+1}}{(n+1) !} \sin \left(\xi+\frac{n+1}{2} \pi\right) sinx=x3!1x3++n!xnsin2nπ+(n+1)!xn+1sin(ξ+2n+1π)
= x − 1 3 ! x 3 + ⋯ + x n n ! sin ⁡ n π 2 + o ( x n ) =x-\frac{1}{3 !} x^{3}+\cdots+\frac{x^{n}}{n !} \sin \frac{n \pi}{2}+o\left(x^{n}\right) =x3!1x3++n!xnsin2nπ+o(xn)
(3) cos ⁡ x = 1 − 1 2 ! x 2 + ⋯ + x n n ! cos ⁡ n π 2 + x n + 1 ( n + 1 ) ! cos ⁡ ( ξ + n + 1 2 π ) \cos x=1-\frac{1}{2 !} x^{2}+\cdots+\frac{x^{n}}{n !} \cos \frac{n \pi}{2}+\frac{x^{n+1}}{(n+1) !} \cos \left(\xi+\frac{n+1}{2} \pi\right) cosx=12!1x2++n!xncos2nπ+(n+1)!xn+1cos(ξ+2n+1π)
= 1 − 1 2 ! x 2 + ⋯ + x n n ! cos ⁡ n π 2 + o ( x n ) =1-\frac{1}{2 !} x^{2}+\cdots+\frac{x^{n}}{n !} \cos \frac{n \pi}{2}+o\left(x^{n}\right) =12!1x2++n!xncos2nπ+o(xn)
(4) ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + ( − 1 ) n x n + 1 ( n + 1 ) ( 1 + ξ ) n + 1 \ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\frac{(-1)^{n} x^{n+1}}{(n+1)(1+\xi)^{n+1}} ln(1+x)=x21x2+31x3+(1)n1nxn+(n+1)(1+ξ)n+1(1)nxn+1
= x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) =x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+o\left(x^{n}\right) =x21x2+31x3+(1)n1nxn+o(xn)
(5) ( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + ⋯ + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n + m ( m − 1 ) ⋯ ( m − n + 1 ) ( n + 1 ) ! x n + 1 ( 1 + ξ ) m − n − 1 (1+x)^{m}=1+m x+\frac{m(m-1)}{2 !} x^{2}+\cdots+\frac{m(m-1) \cdots(m-n+1)}{n !} x^{n}+\frac{m(m-1) \cdots(m-n+1)}{(n+1) !} x^{n+1}(1+\xi)^{m-n-1} (1+x)m=1+mx+2!m(m1)x2++n!m(m1)(mn+1)xn+(n+1)!m(m1)(mn+1)xn+1(1+ξ)mn1
( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + ⋯   , + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n + o ( x n ) (1+x)^{m}=1+m x+\frac{m(m-1)}{2 !} x^{2}+\cdots,+\frac{m(m-1) \cdots(m-n+1)}{n !} x^{n}+o\left(x^{n}\right) (1+x)m=1+mx+2!m(m1)x2+,+n!m(m1)(mn+1)xn+o(xn)

五、曲线相关公式

5.1 平面曲线的切线和法线公式

切线方程 : y − y 0 = f ′ ( x 0 ) ( x − x 0 ) : y-y_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) :yy0=f(x0)(xx0)

法线方程: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x 0 ) ≠ 0 y-y_{0}=-\frac{1}{f^{\prime}\left(x_{0}\right)}\left(x-x_{0}\right), f^{\prime}\left(x_{0}\right) \neq 0 yy0=f(x0)1(xx0),f(x0)=0

5.2 渐近线的求法

水平渐近线
lim ⁡ x → + ∞ f ( x ) = b , \lim _{x \rightarrow+\infty} f(x)=b, x+limf(x)=b,
lim ⁡ x → − ∞ f ( x ) = b \lim _{x \rightarrow-\infty} f(x)=b xlimf(x)=b
y = b y=b y=b称为函数 y = f ( x ) y=f(x) y=f(x)的水平渐近线。

铅直渐近线
lim ⁡ x → x 0 − , f ( x ) = ∞ \underset{x\to x_{0}^{-}}{\mathop{\lim }},f(x)=\infty xx0lim,f(x)=,或 lim ⁡ x → x 0 + , f ( x ) = ∞ \underset{x\to x_{0}^{+}}{\mathop{\lim }},f(x)=\infty xx0+lim,f(x)=
x = x 0 x={{x}_{0}} x=x0称为 y = f ( x ) y=f(x) y=f(x)的铅直渐近线。

斜渐近线
a = lim ⁡ x → ∞ f ( x ) x , b = lim ⁡ x → ∞ [ f ( x ) − a x ] a=\lim _{x \rightarrow \infty} \frac{f(x)}{x}, \quad b=\lim _{x \rightarrow \infty}[f(x)-a x] a=xlimxf(x),b=xlim[f(x)ax]
y = a x + b y=ax+b y=ax+b称为 y = f ( x ) y=f(x) y=f(x)的斜渐近线

5.3 求曲线长度(弧微分)

d S = 1 + y ′ 2 d x d S=\sqrt{1+y^{\prime 2}} d x dS=1+y2 dx

5.4 曲率

曲线 y = f ( x ) y=f(x) y=f(x)在点 ( x , y ) (x,y) (x,y)处的曲率 k = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 k=\frac{\left|y^{\prime \prime}\right|}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}} k=(1+y2)23y.
对于参数方程
在这里插入图片描述

5.5 曲率半径

曲线在点M处的曲率 k ( k ≠ 0 ) k(k≠0) k(k=0)与曲线在点M处的曲率半径 ρ \rho ρ有如下关系: ρ = 1 k \rho =\frac{1}{k} ρ=k1

打赏

写文章不易,如果对您有帮助,就打赏一下吧O(∩_∩)O

  • 1
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值