高等数学
一 、导数
1.1 导数定义:
导数和微分的概念
f ′ ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0)
或者:
f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} f′(x0)=x→x0limx−x0f(x)−f(x0)
1.2 左右导数导数的几何意义和物理意义
函数
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0处的左、右导数分别定义为:
左导数:
f
−
′
(
x
0
)
=
lim
Δ
x
→
0
−
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
Δ
x
=
lim
x
→
x
0
−
f
(
x
)
−
f
(
x
0
)
x
−
x
0
,
(
x
=
x
0
+
Δ
x
)
f^{\prime}_{-}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0^{-}} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=\lim _{x \rightarrow x_{0}^{-}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}},\left(x=x_{0}+\Delta x\right)
f−′(x0)=Δx→0−limΔxf(x0+Δx)−f(x0)=x→x0−limx−x0f(x)−f(x0),(x=x0+Δx)
右导数: f + ′ ( x 0 ) = lim Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 + f ( x ) − f ( x 0 ) x − x 0 f^{\prime}_{+}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0^{+}} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=\lim _{x \rightarrow x_{0}^{+}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} f+′(x0)=Δx→0+limΔxf(x0+Δx)−f(x0)=x→x0+limx−x0f(x)−f(x0)
1.3 函数的可导性与连续性之间的关系
- Th1: 函数 f ( x ) f(x) f(x) 在 x 0 x_{0} x0 处可微 ⇔ f ( x ) \Leftrightarrow f(x) ⇔f(x) 在 x 0 x_{0} x0 处可导
- Th2: 若函数在点 x 0 x_{0} x0 处可导,则 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 处连续, , , , 反之则不成立。即函数连续不一定可导。
- Th3:
f
′
(
x
0
)
f^{\prime}\left(x_{0}\right)
f′(x0) 存在
⇔
\Leftrightarrow
⇔
f
−
′
(
x
0
)
=
f
+
′
(
x
0
)
f^{\prime}_{-}\left(x_{0}\right)=f^{\prime}_{+}\left(x_{0}\right)
f−′(x0)=f+′(x0)
如上图所示,函数连续但不可导。且x=0处左右导数不相等。
1.4 四则运算法则
设函数 u = u ( x ) , v = v ( x ) u=u(x), v=v(x) u=u(x),v=v(x) )在点 x x x 可导则
- ( 1 ) ( u ± v ) ′ = u ′ ± v ′ (1)(u \pm v)^{\prime}=u^{\prime} \pm v^{\prime} (1)(u±v)′=u′±v′
- ( 2 ) ( u v ) ′ = u v ′ + v u ′ (2)(u v)^{\prime}=u v^{\prime}+v u^{\prime} (2)(uv)′=uv′+vu′
- ( 3 ) ( u v ) ′ = v u ′ − u v ′ v 2 ( v ≠ 0 ) (3)\left(\frac{u}{v}\right)^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}(v \neq 0) (3)(vu)′=v2vu′−uv′(v=0)
1.5 基本导数与微分表
y = c y=c y=c (常数) | y ′ = 0 y^{\prime}=0 y′=0 |
---|---|
y = x α ( α 为实数 ) y=x^{\alpha}(\alpha \text { 为实数 }) y=xα(α 为实数 ) | y ′ = α x α − 1 y^{\prime}=\alpha x^{\alpha-1} y′=αxα−1 |
y = a x y=a^{x} y=ax | y ′ = a x ln a y^{\prime}=a^{x} \ln a y′=axlna 特例: ( e x ) ′ = e x \left(e^{x}\right)^{\prime}=e^{x} (ex)′=ex |
y = log a x y=\log _{a} x y=logax | y ′ = 1 x ln a y^{\prime}=\frac{1}{x \ln a} y′=xlna1 特例: ( ln x ) ′ = 1 x (\ln x)^{\prime}=\frac{1}{x} (lnx)′=x1 |
y = sin x y=\sin x y=sinx | y ′ = cos x y^{\prime}=\cos x y′=cosx |
y = cos x y=\cos x y=cosx | y ′ = − sin x y^{\prime}=-\sin x y′=−sinx |
y = tan x y=\tan x y=tanx | y ′ = 1 cos 2 x = sec 2 x y^{\prime}=\frac{1}{\cos ^{2} x}=\sec ^{2} x y′=cos2x1=sec2x |
y = cot x y=\cot x y=cotx | y ′ = − 1 sin 2 x = − csc 2 x y^{\prime}=-\frac{1}{\sin ^{2} x}=-\csc ^{2} x y′=−sin2x1=−csc2x |
y = sec x y=\sec x y=secx | y ′ = sec x tan x y^{\prime}=\sec x \tan x y′=secxtanx |
y = csc x y=\csc x y=cscx | y ′ = − csc x cot x y^{\prime}=-\csc x \cot x y′=−cscxcotx |
y = arcsin x y=\arcsin x y=arcsinx | y ′ = 1 1 − x 2 y^{\prime}=\frac{1}{\sqrt{1-x^{2}}} y′=1−x21 |
y = arccos x y=\arccos x y=arccosx | y ′ = − 1 1 − x 2 y^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} y′=−1−x21 |
y = arctan x y=\arctan x y=arctanx | y ′ = 1 1 + x 2 y^{\prime}=\frac{1}{1+x^{2}} y′=1+x21 |
y = arccot x y=\operatorname{arccot} x y=arccotx | y ′ = − 1 1 + x 2 y^{\prime}=-\frac{1}{1+x^{2}} y′=−1+x21 |
y = s h x y=s h x y=shx | y ′ = c h x y^{\prime}=c h x y′=chx |
y = c h x y=c h x y=chx | y ′ = s h x y^{\prime}=s h x y′=shx |
1.6 复合函数,反函数,隐函数以及参数方程所确定的函数的微分法
(1) 反函数的运算法则: 设
y
=
f
(
x
)
y=f(x)
y=f(x) 在点
x
x
x 的某邻域内单调连续, 在点
x
x
x 处可导且
f
′
(
x
)
≠
0
,
f^{\prime}(x) \neq 0,
f′(x)=0, 则其反函数在点
x
x
x 所对应的
y
y
y 处可导, 并且有
d
y
d
x
=
1
d
x
\frac{d y}{d x}=\frac{1}{d x}
dxdy=dx1
(2) 复合函数的运算法则:若
μ
=
φ
(
x
)
\mu=\varphi(x)
μ=φ(x) 在点
x
x
x 可导,而
y
=
f
(
μ
)
y=f(\mu)
y=f(μ) 在对应点
μ
(
μ
=
φ
(
x
)
)
\mu(\mu=\varphi(x))
μ(μ=φ(x)) 可导,则复合函数
y
=
f
(
φ
(
x
)
)
y=f(\varphi(x))
y=f(φ(x)) 在点
x
x
x 可导,且
y
′
=
f
′
(
μ
)
⋅
φ
′
(
x
)
y^{\prime}=f^{\prime}(\mu) \cdot \varphi^{\prime}(x)
y′=f′(μ)⋅φ′(x)
(3) 隐函数导数
d
y
d
x
\frac{d y}{d x}
dxdy 的求法一般有三种方法:
-
1)方程两边对x求导,要记住y是x的函数, 则y的函数是x的复合函数.例如 1 y , y 2 , ln y , e y \frac{1}{y}, y^{2}, \ln y, e^{y} y1,y2,lny,ey 等均是 x x x 的复合函数. 对 x x x 求导应按复合函数连锁法则做.
-
2 ) 公式法.由 F ( x , y ) = 0 F(x, y)=0 F(x,y)=0 知 d y d x = − F ′ x ( x , y ) F ′ y ( x , y ) \frac{d y}{d x}=-\frac{F^{\prime} x(x, y)}{F^{\prime} y(x, y)} dxdy=−F′y(x,y)F′x(x,y) 其中, F x ′ ( x , y ) , F y ′ ( x , y ) F_{x}^{\prime}(x, y), F_{y}^{\prime}(x, y) Fx′(x,y),Fy′(x,y) 分别表示 F ( x , y ) F(x, y) F(x,y) 对 x x x 和 y y y 的偏导数
-
3)利用微分形式不变性,参考复合函数求导
1.7 常用高阶导数公式
( a x ) ( n ) = a x ln n a ( a > 0 ) ( e x ) ( n ) = e x \left(a^{x}\right)^{(n)}=a^{x} \ln ^{n} a \quad(a>0) \quad\left(e^{x}\right)^{(n)}=e^{x} (ax)(n)=axlnna(a>0)(ex)(n)=ex |
---|
( sin k x ) ( n ) = k n sin ( k x + n ⋅ π 2 ) (\sin k x)^{(n)}=k^{n} \sin \left(k x+n \cdot \frac{\pi}{2}\right) (sinkx)(n)=knsin(kx+n⋅2π) |
( cos k x ) ( n ) = k n cos ( k x + n ⋅ π 2 ) (\cos k x)^{(n)}=k^{n} \cos \left(k x+n \cdot \frac{\pi}{2}\right) (coskx)(n)=kncos(kx+n⋅2π) |
( x m ) ( n ) = m ( m − 1 ) ⋯ ( m − n + 1 ) x m − n \left(x^{m}\right)^{(n)}=m(m-1) \cdots(m-n+1) x^{m-n} (xm)(n)=m(m−1)⋯(m−n+1)xm−n |
( ln x ) ( n ) = ( − 1 ) ( n − 1 ) ( n − 1 ) ! x n (\ln x)^{(n)}=(-1)^{(n-1)} \frac{(n-1) !}{x^{n}} (lnx)(n)=(−1)(n−1)xn(n−1)! |
莱布尼兹公式:若 u ( x ) , v ( x ) u(x), v(x) u(x),v(x) 均 n n n 阶可导, 则 ( u v ) ( n ) = ∑ i = 0 n c n i u ( i ) v ( n − i ) , (u v)^{(n)}=\sum_{i=0}^{n} c_{n}^{i} u^{(i)} v^{(n-i)}, (uv)(n)=∑i=0ncniu(i)v(n−i), 其中 u ( 0 ) = u , v ( 0 ) = v u^{(0)}=u, v^{(0)}=v u(0)=u,v(0)=v |
二、 微分中值定理 f ′ ( x 0 ) = 0 f^{\prime}\left(x_{0}\right)=0 f′(x0)=0
微分中值定理是一系列中值定理总称
2.1 费马定理
若函数
f
(
x
)
f(x)
f(x) 满足条件:
(1) 函数
f
(
x
)
f(x)
f(x) 在
x
0
x_{0}
x0 的某邻域内有定义, 并且在此邻域内恒有
f
(
x
)
≤
f
(
x
0
)
f(x) \leq f\left(x_{0}\right)
f(x)≤f(x0) 或
f
(
x
)
≥
f
(
x
0
)
f(x) \geq f\left(x_{0}\right)
f(x)≥f(x0)
(2)
f
(
x
)
f(x)
f(x) 在
x
0
x_{0}
x0 处可导,则有
f
′
(
x
0
)
=
0
f^{\prime}\left(x_{0}\right)=0
f′(x0)=0
2.2 罗尔定理
设函数
f
(
x
)
f(x)
f(x) 满足条件:
(1)在闭区间[
(
a
,
b
]
(a, b]
(a,b] 上连续;
(2)在
(
a
,
b
)
(a, b)
(a,b) 内可导;
(3)
f
(
a
)
=
f
(
b
)
f(a)=f(b)
f(a)=f(b)
则在
(
a
,
b
)
(a, b)
(a,b) 内一存在个
ξ
\xi
ξ 使
f
′
(
ξ
)
=
0
f^{\prime}(\xi)=0
f′(ξ)=0
罗尔定理其实就是拉格朗日中值定理的一种特例
2.3 拉格朗日中值定理
设函数
f
(
x
)
f(x)
f(x) 满足条件:
(1)在
[
a
,
b
]
[a, b]
[a,b] 上连续
(2)在
(
a
,
b
)
(a, b)
(a,b) 内可导;
则在
(
a
,
b
)
(a, b)
(a,b) 内一存在个
ξ
\xi
ξ 使
f
(
b
)
−
f
(
a
)
b
−
a
=
f
′
(
ξ
)
\frac{f(b)-f(a)}{b-a}=f^{\prime}(\xi)
b−af(b)−f(a)=f′(ξ)
这个定理的几何意义就是,至少存在一点的切线与端点的连线平行;物理意义是,至少存在一点的速度与平均速度相等
2.4 柯西中值定理
设函数
f
(
x
)
,
g
(
x
)
f(x), g(x)
f(x),g(x) 满足条件:
(1) 在
[
a
,
b
]
[a, b]
[a,b] 上连续;
(2) 在
(
a
,
b
)
(a, b)
(a,b) 内可导且
f
′
(
x
)
,
g
′
(
x
)
f^{\prime}(x), g^{\prime}(x)
f′(x),g′(x) 均存在, 且
g
′
(
x
)
≠
0
g^{\prime}(x) \neq 0
g′(x)=0
则在 ( a , b ) (a, b) (a,b) 内存在一个 ξ \xi ξ使 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)} g(b)−g(a)f(b)−f(a)=g′(ξ)f′(ξ)
几何意义: https://zhuanlan.zhihu.com/p/47436090
三、 极限
3.1 洛必达法则
法则 I (
0
0
\frac{0}{0}
00 型):设函数
f
(
x
)
,
g
(
x
)
f(x), g(x)
f(x),g(x) 满足条件:
lim
x
→
x
0
f
(
x
)
=
0
,
lim
x
→
x
0
g
(
x
)
=
0
\quad \lim _{x \rightarrow x_{0}} f(x)=0, \lim _{x \rightarrow x_{0}} g(x)=0
x→x0limf(x)=0,x→x0limg(x)=0
f
(
x
)
,
g
(
x
)
在
x
0
的邻域内可导, (在
x
0
处可除外)
)
\left.f(x), g(x) \text { 在 } x_{0} \text { 的邻域内可导, } \text { (在 } x_{0} \text { 处可除外) }\right)
f(x),g(x) 在 x0 的邻域内可导, (在 x0 处可除外) ) 且
g
′
(
x
)
≠
0
;
lim
x
→
x
0
f
′
(
x
)
g
′
(
x
)
g^{\prime}(x) \neq 0;\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
g′(x)=0;x→x0limg′(x)f′(x)存在(或等于
∞
\infty
∞)
则: lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} x→x0limg(x)f(x)=x→x0limg′(x)f′(x)
法则
I
′
(
0
0
)
I^{\prime}(\frac{0}{0})
I′(00)型 设函数
f
(
x
)
,
g
(
x
)
f(x),g(x)
f(x),g(x)满足条件:
lim
x
→
∞
f
(
x
)
=
0
,
lim
x
→
∞
g
(
x
)
=
0
\lim _{x \rightarrow \infty} f(x)=0, \lim _{x \rightarrow \infty} g(x)=0
x→∞limf(x)=0,x→∞limg(x)=0
存在一个
X
>
0
X>0
X>0,当
∣
x
∣
>
X
|x|>X
∣x∣>X时,
f
(
x
)
,
g
(
x
)
f(x), g(x)
f(x),g(x) 可导,且
g
′
(
x
)
≠
0
;
lim
x
→
x
0
f
′
(
x
)
g
′
(
x
)
g^{\prime}(x) \neq 0 ; \lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
g′(x)=0;x→x0limg′(x)f′(x)存在(或等于
∞
\infty
∞)。
则: lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} x→x0limg(x)f(x)=x→x0limg′(x)f′(x)
法则
Π
(
∞
∞
)
\Pi\left(\frac{\infty}{\infty}\right)
Π(∞∞)型设函数
f
(
x
)
,
g
(
x
)
f(x),g(x)
f(x),g(x)满足条件:
lim
x
→
x
0
f
(
x
)
=
∞
,
lim
x
→
x
0
g
(
x
)
=
∞
\lim _{x \rightarrow x_{0}} f(x)=\infty, \lim _{x \rightarrow x_{0}} g(x)=\infty
x→x0limf(x)=∞,x→x0limg(x)=∞.
f
(
x
)
,
g
(
x
)
f(x),g(x)
f(x),g(x)在
x
0
{x}_{0}
x0 的邻域内可导(在
x
0
{x}_{0}
x0处可除外)且
g
′
(
x
)
≠
0
;
lim
x
→
x
0
f
′
(
x
)
g
′
(
x
)
g^{\prime}(x) \neq 0 ; \lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
g′(x)=0;x→x0limg′(x)f′(x)存在(或等于
∞
\infty
∞)。
则: lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} x→x0limg(x)f(x)=x→x0limg′(x)f′(x) .
同理法则 Π ′ ( ∞ ∞ ) \Pi^{\prime}\left(\frac{\infty}{\infty}\right) Π′(∞∞)型可以仿照法则 I ′ ( 0 0 ) I^{\prime}(\frac{0}{0}) I′(00)型写出
四、 泰勒公式
4.1 一般形式
设函数
f
(
x
)
f(x)
f(x)在点
x
0
{x}_{0}
x0处的某邻域内具有
n
+
1
n+1
n+1阶导数,则对该邻域内异于
x
0
{x}_{0}
x0的任意点
x
x
x,在
x
0
{x}_{0}
x0与
x
x
x之间至少存在一个
ξ
\xi
ξ,使得:
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
1
2
!
f
′
′
(
x
0
)
(
x
−
x
0
)
2
+
⋯
+
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
+
R
n
(
x
)
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2 !} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}+R_{n}(x)
f(x)=f(x0)+f′(x0)(x−x0)+2!1f′′(x0)(x−x0)2+⋯+n!f(n)(x0)(x−x0)n+Rn(x)
其中
R
n
(
x
)
=
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
(
x
−
x
0
)
n
+
1
R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1) !}\left(x-x_{0}\right)^{n+1}
Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1
称为
f
(
x
)
f(x)
f(x)在点
x
0
{x}_{0}
x0处的
n
n
n阶泰勒余项。
4.2 麦克劳林公式
令
x
0
=
0
{x}_{0}=0
x0=0,则
n
n
n阶泰勒公式变为麦克劳林公式为:
f
(
x
)
=
f
(
0
)
+
f
′
(
0
)
x
+
1
2
!
f
′
′
(
0
)
x
2
+
⋯
+
f
(
n
)
(
0
)
n
!
x
n
+
R
n
(
x
)
f(x)=f(0)+f^{\prime}(0) x+\frac{1}{2 !} f^{\prime \prime}(0) x^{2}+\cdots+\frac{f^{(n)}(0)}{n !} x^{n}+R_{n}(x)
f(x)=f(0)+f′(0)x+2!1f′′(0)x2+⋯+n!f(n)(0)xn+Rn(x)
其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1) !} x^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)xn+1, ξ 在 0 与 x \xi 在0与x ξ在0与x之间.
4.3 常用五种函数在 x 0 = 0 {x}_{0}=0 x0=0处的泰勒公式
(1) e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + x n + 1 ( n + 1 ) ! e ξ e^{x}=1+x+\frac{1}{2 !} x^{2}+\cdots+\frac{1}{n !} x^{n}+\frac{x^{n+1}}{(n+1) !} e^{\xi} ex=1+x+2!1x2+⋯+n!1xn+(n+1)!xn+1eξ |
---|
或 = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + o ( x n ) =1+x+\frac{1}{2 !} x^{2}+\cdots+\frac{1}{n !} x^{n}+o\left(x^{n}\right) =1+x+2!1x2+⋯+n!1xn+o(xn) |
(2) sin x = x − 1 3 ! x 3 + ⋯ + x n n ! sin n π 2 + x n + 1 ( n + 1 ) ! sin ( ξ + n + 1 2 π ) \sin x=x-\frac{1}{3 !} x^{3}+\cdots+\frac{x^{n}}{n !} \sin \frac{n \pi}{2}+\frac{x^{n+1}}{(n+1) !} \sin \left(\xi+\frac{n+1}{2} \pi\right) sinx=x−3!1x3+⋯+n!xnsin2nπ+(n+1)!xn+1sin(ξ+2n+1π) |
或 = x − 1 3 ! x 3 + ⋯ + x n n ! sin n π 2 + o ( x n ) =x-\frac{1}{3 !} x^{3}+\cdots+\frac{x^{n}}{n !} \sin \frac{n \pi}{2}+o\left(x^{n}\right) =x−3!1x3+⋯+n!xnsin2nπ+o(xn) |
(3) cos x = 1 − 1 2 ! x 2 + ⋯ + x n n ! cos n π 2 + x n + 1 ( n + 1 ) ! cos ( ξ + n + 1 2 π ) \cos x=1-\frac{1}{2 !} x^{2}+\cdots+\frac{x^{n}}{n !} \cos \frac{n \pi}{2}+\frac{x^{n+1}}{(n+1) !} \cos \left(\xi+\frac{n+1}{2} \pi\right) cosx=1−2!1x2+⋯+n!xncos2nπ+(n+1)!xn+1cos(ξ+2n+1π) |
或 = 1 − 1 2 ! x 2 + ⋯ + x n n ! cos n π 2 + o ( x n ) =1-\frac{1}{2 !} x^{2}+\cdots+\frac{x^{n}}{n !} \cos \frac{n \pi}{2}+o\left(x^{n}\right) =1−2!1x2+⋯+n!xncos2nπ+o(xn) |
(4) ln ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + ( − 1 ) n x n + 1 ( n + 1 ) ( 1 + ξ ) n + 1 \ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\frac{(-1)^{n} x^{n+1}}{(n+1)(1+\xi)^{n+1}} ln(1+x)=x−21x2+31x3−⋯+(−1)n−1nxn+(n+1)(1+ξ)n+1(−1)nxn+1 |
或 = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) =x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+o\left(x^{n}\right) =x−21x2+31x3−⋯+(−1)n−1nxn+o(xn) |
(5) ( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + ⋯ + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n + m ( m − 1 ) ⋯ ( m − n + 1 ) ( n + 1 ) ! x n + 1 ( 1 + ξ ) m − n − 1 (1+x)^{m}=1+m x+\frac{m(m-1)}{2 !} x^{2}+\cdots+\frac{m(m-1) \cdots(m-n+1)}{n !} x^{n}+\frac{m(m-1) \cdots(m-n+1)}{(n+1) !} x^{n+1}(1+\xi)^{m-n-1} (1+x)m=1+mx+2!m(m−1)x2+⋯+n!m(m−1)⋯(m−n+1)xn+(n+1)!m(m−1)⋯(m−n+1)xn+1(1+ξ)m−n−1 |
或 ( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + ⋯ , + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n + o ( x n ) (1+x)^{m}=1+m x+\frac{m(m-1)}{2 !} x^{2}+\cdots,+\frac{m(m-1) \cdots(m-n+1)}{n !} x^{n}+o\left(x^{n}\right) (1+x)m=1+mx+2!m(m−1)x2+⋯,+n!m(m−1)⋯(m−n+1)xn+o(xn) |
五、曲线相关公式
5.1 平面曲线的切线和法线公式
切线方程 : y − y 0 = f ′ ( x 0 ) ( x − x 0 ) : y-y_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) :y−y0=f′(x0)(x−x0)
法线方程: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x 0 ) ≠ 0 y-y_{0}=-\frac{1}{f^{\prime}\left(x_{0}\right)}\left(x-x_{0}\right), f^{\prime}\left(x_{0}\right) \neq 0 y−y0=−f′(x0)1(x−x0),f′(x0)=0
5.2 渐近线的求法
水平渐近线
若
lim
x
→
+
∞
f
(
x
)
=
b
,
\lim _{x \rightarrow+\infty} f(x)=b,
x→+∞limf(x)=b,
或
lim
x
→
−
∞
f
(
x
)
=
b
\lim _{x \rightarrow-\infty} f(x)=b
x→−∞limf(x)=b
则
y
=
b
y=b
y=b称为函数
y
=
f
(
x
)
y=f(x)
y=f(x)的水平渐近线。
铅直渐近线
若
lim
x
→
x
0
−
,
f
(
x
)
=
∞
\underset{x\to x_{0}^{-}}{\mathop{\lim }},f(x)=\infty
x→x0−lim,f(x)=∞,或
lim
x
→
x
0
+
,
f
(
x
)
=
∞
\underset{x\to x_{0}^{+}}{\mathop{\lim }},f(x)=\infty
x→x0+lim,f(x)=∞
则
x
=
x
0
x={{x}_{0}}
x=x0称为
y
=
f
(
x
)
y=f(x)
y=f(x)的铅直渐近线。
斜渐近线
若
a
=
lim
x
→
∞
f
(
x
)
x
,
b
=
lim
x
→
∞
[
f
(
x
)
−
a
x
]
a=\lim _{x \rightarrow \infty} \frac{f(x)}{x}, \quad b=\lim _{x \rightarrow \infty}[f(x)-a x]
a=x→∞limxf(x),b=x→∞lim[f(x)−ax]
则
y
=
a
x
+
b
y=ax+b
y=ax+b称为
y
=
f
(
x
)
y=f(x)
y=f(x)的斜渐近线
5.3 求曲线长度(弧微分)
d S = 1 + y ′ 2 d x d S=\sqrt{1+y^{\prime 2}} d x dS=1+y′2dx
5.4 曲率
曲线
y
=
f
(
x
)
y=f(x)
y=f(x)在点
(
x
,
y
)
(x,y)
(x,y)处的曲率
k
=
∣
y
′
′
∣
(
1
+
y
′
2
)
3
2
k=\frac{\left|y^{\prime \prime}\right|}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}
k=(1+y′2)23∣y′′∣.
对于参数方程
5.5 曲率半径
曲线在点M处的曲率 k ( k ≠ 0 ) k(k≠0) k(k=0)与曲线在点M处的曲率半径 ρ \rho ρ有如下关系: ρ = 1 k \rho =\frac{1}{k} ρ=k1。
打赏
写文章不易,如果对您有帮助,就打赏一下吧O(∩_∩)O