函数连续性定理、导函数定理、中值定理证明

函数连续性定理、导函数定理、中值定理证明

1 函数连续性定理

1.1 有界性定理

Theorem \textbf{Theorem} Theorem 有界性定理

f ∈ C [ a , b ] f\in C[a,b] fC[a,b],则 ∃ M ∈ R + , s . t .   ∣ f ( x ) ∣ ⩽ M \exists M\in\mathbb{R^+},\mathrm{s.t.}\ |f(x)|\leqslant M MR+,s.t. f(x)M

Proof1: \color{blue}{\textbf{Proof1:}} Proof1:

假设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 无界,二分区间

[ a , b ] = [ a , a + b 2 ] ∩ [ a + b 2 , b ] [a,b]=\left[a,\frac{a+b}{2}\right]\cap \left[\frac{a+b}{2},b\right] [a,b]=[a,2a+b][2a+b,b]

f ( x ) f(x) f(x) 至少在其中一个半区间无界,记该半区间为 [ a 1 , b 1 ] [a_1,b_1] [a1,b1],再次二分区间,记其中函数无界区间为 [ a 2 , b 2 ] [a_2,b_2] [a2,b2],重复以上过程,可得一列闭区间套 { [ a n , b n ] } n ∈ N + \{[a_n,b_n]\}_{n\in\mathbb{N^+}} {[an,bn]}nN+ f ( x ) f(x) f(x) 在该区间套上均无界,由闭区间套定理有

∃ ! ξ ∈ ⋂ n = 1 ∞ [ a n , b n ] ⊆ [ a , b ] \exists !\xi\in\bigcap\limits_{n=1}^{\infty}[a_n,b_n]\subseteq [a,b] !ξn=1[an,bn][a,b]

ξ ∈ [ a , b ] , f ∈ C [ a , b ] \xi\in[a,b],f\in C[a,b] ξ[a,b],fC[a,b],故 f ( x ) f(x) f(x) ξ \xi ξ 点连续,于是有

lim ⁡ x → ξ f ( x ) = f ( ξ ) \lim_{x\to\xi}f(x)=f(\xi) xξlimf(x)=f(ξ)

由极限局部有界性, ∃ ε > 0 , s . t . f ( x ) \exists \varepsilon>0,\mathrm{s.t.}f(x) ε>0,s.t.f(x) U ( ξ , δ ) U(\xi,\delta) U(ξ,δ) 有界,又 ∀ ε > 0 , ∃ N ∈ N + , s . t .   ∀ n > N : [ a n , b n ] ⊆ U ( ξ , δ ) \forall \varepsilon>0,\exists N\in\mathbb{N^+},\mathrm{s.t.}\ \forall n>N:[a_n,b_n]\subseteq U(\xi,\delta) ε>0,NN+,s.t. n>N:[an,bn]U(ξ,δ),所以 ∃ n > N , s . t . f ( x ) \exists n>N,\mathrm{s.t.}f(x) n>N,s.t.f(x) [ a n , b n ] [a_n,b_n] [an,bn] 有界,矛盾,假设不成立,故 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 有界.

Proof2: \color{blue}{\textbf{Proof2:}} Proof2:

假设 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上无界,即

∀ M ∈ R + , ∃ x ∈ [ a , b ] ,   s . t . ∣ f ( x ) ∣ > M \forall M\in\mathbb{R^+},\exists x\in[a,b],\ \mathrm{s.t.}|f(x)|>M MR+,x[a,b], s.t.f(x)>M

∀ n ∈ N + , ∃ x n ∈ [ a , b ] ,   s . t . ∣ f ( x n ) ∣ > n \forall n\in\mathbb{N^+},\exists x_n\in[a,b],\ \mathrm{s.t.}|f(x_n)|>n nN+,xn[a,b], s.t.f(xn)>n

Bolzano-Weierstrass \text{Bolzano-Weierstrass} Bolzano-Weierstrass 定理,有界数列 { x n } \{x_n\} {xn} 存在收敛子列 { x n k } \{x_{n_k}\} {xnk} 收敛于 ξ \xi ξ,即

lim ⁡ k → ∞ x n k = ξ \lim\limits_{k\to\infty}x_{n_k}=\xi klimxnk=ξ

f ∈ C [ a , b ] , ξ ∈ [ a , b ] f\in C[a,b],\xi\in[a,b] fC[a,b],ξ[a,b],故 f ( x ) f(x) f(x) ξ \xi ξ 点处连续,又

∀ k ∈ N + , ∃ x n k ∈ [ a , b ] ,   s . t . ∣ f ( x n k ) ∣ > n k \forall k\in\mathbb{N^+},\exists x_{n_k}\in[a,b],\ \mathrm{s.t.}|f(x_{n_k})|>n_k kN+,xnk[a,b], s.t.f(xnk)>nk

故由 Heine \text{Heine} Heine 归结原则有

f ( ξ ) = lim ⁡ x → ξ f ( x ) = lim ⁡ k → ∞ f ( x n k ) = + ∞ f(\xi)=\lim\limits_{x\to\xi}f(x)=\lim\limits_{k\to\infty}f(x_{n_k})=+\infty f(ξ)=xξlimf(x)=klimf(xnk)=+

连续点处必存在极限,矛盾,于是 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上有界.

Proof3: \color{blue}{\textbf{Proof3:}} Proof3:

由局部有界性有

∀ x ∈ [ a , b ] , ∃ δ x , M x > 0 ,   s . t .   ∀ x ∈ U ( x , δ ) ∩ [ a , b ] : ∣ f ( x ) ∣ ⩽ M x \forall x\in[a,b],\exists \delta_x,M_x>0,\ \mathrm{s.t.}\ \forall x\in U(x,\delta)\cap [a,b]:|f(x)|\leqslant M_x x[a,b],δx,Mx>0, s.t. xU(x,δ)[a,b]:f(x)Mx

一组开区间集 { U ( x , δ x ) ∣ x ∈ [ a , b ] } \{U(x,\delta_x)|x\in[a,b]\} {U(x,δx)x[a,b]} 为闭区间 [ a , b ] [a,b] [a,b] 的一个无限开覆盖,即

[ a , b ] ⊆ { U ( x , δ x ) ∣ x ∈ [ a , b ] } [a,b]\subseteq \{U(x,\delta_x)|x\in[a,b]\} [a,b]{U(x,δx)x[a,b]}

Heine-Borel \text{Heine-Borel} Heine-Borel 定理,可从无限开覆盖中选择有限开区间覆盖 [ a , b ] [a,b] [a,b],设有限开覆盖为

[ a , b ] ⊆ { U ( x k , δ k ) ∣ x ∈ [ a , b ] ; k = 1 , 2 , ⋯   , n } [a,b]\subseteq\{U(x_k,\delta_k)|x\in[a,b];k=1,2,\cdots,n\} [a,b]{U(xk,δk)x[a,b];k=1,2,,n}

∃ M k > 0 , s . t . ∀ x ∈ U ( x k , δ k ) ∩ [ a , b ] : ∣ f ( x ) ∣ ⩽ M k   ( k = 1 , 2 , ⋯   , n ) \exists M_k>0,\mathrm{s.t.}\forall x\in U(x_k,\delta_k)\cap [a,b]:|f(x)|\leqslant M_k\ (k=1,2,\cdots,n) Mk>0,s.t.xU(xk,δk)[a,b]:f(x)Mk (k=1,2,,n)

∀ x ∈ [ a , b ] : x ∈ U ( x k , δ k ) , ∣ f ( x ) ∣ ⩽ M k ⩽ max ⁡ 1 ⩽ k ⩽ n M k \forall x\in[a,b]:x\in U(x_k,\delta_k), |f(x)|\leqslant M_k\leqslant \max\limits_{1\leqslant k\leqslant n}M_k x[a,b]:xU(xk,δk),f(x)Mk1knmaxMk

1.2 最值定理

Theorem \textbf{Theorem} Theorem 最值定理

f ∈ C [ a , b ] f\in C[a,b] fC[a,b],则 ∃ ξ , η ∈ [ a , b ] , s . t .   ∀ x ∈ [ a , b ] : f ( ξ ) ⩽ f ( x ) ⩽ f ( η ) \exists \xi,\eta\in[a,b],\mathrm{s.t.}\ \forall x\in[a,b]: f(\xi)\leqslant f(x)\leqslant f(\eta) ξ,η[a,b],s.t. x[a,b]:f(ξ)f(x)f(η)

Proof1: \color{blue}{\textbf{Proof1:}} Proof1:

由有界性定理可知,函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 有界,则 f ( [ a , b ] ) = { f ( x ) ∣ x ∈ [ a , b ] } f([a,b])=\{f(x)|x\in[a,b]\} f([a,b])={f(x)x[a,b]} 为有界数集,由确界存在原理, f ( [ a , b ] ) f([a,b]) f([a,b]) 存在上、下确界,记

α = inf ⁡ f ( [ a , b ] )   , β = sup ⁡ f ( [ a , b ] ) \alpha=\inf f([a,b])\ ,\beta=\sup f([a,b]) α=inff([a,b]) ,β=supf([a,b])

此时证 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 内可以取到上下确界,即

∃ ξ , η ∈ [ a , b ] , s . t . f ( ξ ) = α , f ( η ) = β \exists \xi,\eta\in[a,b],\mathrm{s.t.}f(\xi)=\alpha,f(\eta)=\beta ξ,η[a,b],s.t.f(ξ)=α,f(η)=β

考虑反证,由上确界定义, ∀ x ∈ [ a , b ] : f ( x ) ⩽ β \forall x\in[a,b]:f(x)\leqslant \beta x[a,b]:f(x)β,假设 ∀ x ∈ [ a , b ] : f ( x ) < β \forall x\in[a,b]:f(x)<\beta x[a,b]:f(x)<β,即函数无法取到上确界,构造如下函数

g ( x ) : = 1 β − f ( x ) > 0 g(x):=\frac{1}{\beta-f(x)}>0 g(x):=βf(x)1>0

由连续函数四则运算法则可知 g ∈ C [ a , b ] g\in C[a,b] gC[a,b],故 g ( x ) g(x) g(x) 亦有界,记上界为 g ( x ) ⩽ β ′ g(x)\leqslant \beta' g(x)β,则

0 < g ( x ) = 1 β − f ( x ) ⩽ β ′   ⇒   f ( x ) ⩽ β − 1 β ′ < β 0<g(x)=\frac{1}{\beta-f(x)}\leqslant \beta'\ \Rightarrow\ f(x)\leqslant \beta-\frac{1}{\beta'}<\beta 0<g(x)=βf(x)1β  f(x)ββ1<β

此时 β − 1 β ′ \displaystyle\beta-\frac{1}{\beta'} ββ1 f ( x ) f(x) f(x) 的上界,与 β \beta β 是上确界矛盾,故

∃ η ∈ [ a , b ] ,   s . t .   f ( η ) = β = max ⁡ x ∈ [ a , b ] f ( x ) \exists\eta\in[a,b],\ \mathrm{s.t.}\ f(\eta)=\beta=\max\limits_{x\in[a,b]}f(x) η[a,b], s.t. f(η)=β=x[a,b]maxf(x)

同理可证下确界情形.

Proof2: \color{blue}{\textbf{Proof2:}} Proof2:

由有界性定理,函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 有界,则 f ( [ a , b ] ) = { f ( x ) ∣ x ∈ [ a , b ] } f([a,b])=\{f(x)|x\in[a,b]\} f([a,b])={f(x)x[a,b]} 为有界数集,由确界存在原理,数集 f ( [ a , b ] ) f([a,b]) f([a,b]) 存在上下确界,记

α = inf ⁡ f ( [ a , b ] ) , β = sup ⁡ f ( [ a , b ] ) \alpha=\inf f([a,b]),\beta=\sup f([a,b]) α=inff([a,b]),β=supf([a,b])

此时证 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 内可以取到上下确界,即

∃ ξ , η ∈ [ a , b ] ,   s . t . f ( ξ ) = α , f ( η ) = β \exists \xi,\eta\in[a,b],\ \mathrm{s.t.}f(\xi)=\alpha,f(\eta)=\beta ξ,η[a,b], s.t.f(ξ)=α,f(η)=β

由下确界定义

∀ x ∈ [ a , b ] : f ( x ) ⩾ α \forall x\in[a,b]:f(x)\geqslant \alpha x[a,b]:f(x)α

∀ ε > 0 , ∃ x ∈ [ a , b ] ,   s . t . f ( x ) < α + ε \forall \varepsilon>0,\exists x\in[a,b],\ \mathrm{s.t.}f(x)<\alpha+\varepsilon ε>0,x[a,b], s.t.f(x)<α+ε

ε n = 1 n \displaystyle\varepsilon_n=\frac{1}{n} εn=n1,相应可得数列 { x n } n ∈ N + ∈ [ a , b ] \{x_n\}_{n\in\mathbb{N^+}}\in[a,b] {xn}nN+[a,b],有

α ⩽ f ( x n ) < α + ε n = α + 1 n \alpha\leqslant f(x_n)<\alpha+\varepsilon_n=\alpha+\frac{1}{n} αf(xn)<α+εn=α+n1

Bolzano-Weierstrass \text{Bolzano-Weierstrass} Bolzano-Weierstrass 定理, { x n } \{x_n\} {xn} 存在子列 { x n k } \{x_{n_k}\} {xnk} 收敛于 ξ \xi ξ,于是

α ⩽ f ( x n k ) < α + 1 n k \alpha\leqslant f(x_{n_k})<\alpha+\frac{1}{n_k} αf(xnk)<α+nk1

由迫敛性准则可知

f ( ξ ) = α = min ⁡ x ∈ [ a , b ] f ( x ) f(\xi)=\alpha=\min\limits_{x\in[a,b]}f(x) f(ξ)=α=x[a,b]minf(x)

同理可证上确界情形.

1.3 零点存在定理

Theorem \textbf{Theorem} Theorem 零点存在定理

f ∈ C [ a , b ]   , f ( a ) ⋅ f ( b ) < 0 f\in C[a,b]\ ,f(a)\cdot f(b)<0 fC[a,b] ,f(a)f(b)<0,则 ∃ ξ ∈ ( a , b ) , s . t . f ( ξ ) = 0 \exists\xi\in(a,b),\mathrm{s.t.}f(\xi)=0 ξ(a,b),s.t.f(ξ)=0

Proof: \color{blue}{\textbf{Proof:}} Proof:

不妨设 f ( a ) < 0 , f ( b ) > 0 f(a)<0,f(b)>0 f(a)<0,f(b)>0,记 a + b 2 = c \frac{a+b}{2}=c 2a+b=c,二分区间 [ a , b ] = [ a , c ] ∩ [ c , b ] [a,b]=[a,c]\cap[c,b] [a,b]=[a,c][c,b],若 f ( c ) = 0 f(c)=0 f(c)=0,则命题显然成立;否则令

[ a 1 , b 1 ] : = { [ a , c ]   , f ( c ) > 0 [ c , b ]   , f ( c ) < 0 [a_1,b_1]:=\left\{\begin{array}{l} [a,c]\ ,f(c)>0\\ \\ [c,b]\ ,f(c)<0\\ \end{array}\right. [a1,b1]:= [a,c] ,f(c)>0[c,b] ,f(c)<0

不断二分区间并取端点异号区间,有

[ a n , b n ] ⊆ [ a n + 1 , b n + 1 ]   ,   lim ⁡ n → ∞ ∣ a n − b n ∣ = lim ⁡ n → ∞ b − a 2 n = 0 [a_n,b_n]\subseteq [a_{n+1},b_{n+1}]\ ,\ \lim\limits_{n\to\infty}|a_n-b_n|=\lim\limits_{n\to\infty}\frac{b-a}{2^n}=0 [an,bn][an+1,bn+1] , nlimanbn=nlim2nba=0

故可得闭区间套 { [ a n , b n ] } n ∈ N + \{[a_n,b_n]\}_{n\in\mathbb{N^+}} {[an,bn]}nN+,由闭区间套定理可知

∃ ! ξ ∈ ⋂ n = 1 ∞ [ a n , b n ] ⊆ [ a , b ]   ,   ξ = lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n \exists !\xi\in\bigcap_{n=1}^{\infty}[a_n,b_n]\subseteq [a,b]\ ,\ \xi=\lim\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}b_n !ξn=1[an,bn][a,b] , ξ=nliman=nlimbn

f ∈ C [ a , b ] f\in C[a,b] fC[a,b],且 f ( a n ) < 0 , f ( b n ) > 0 f(a_n)<0,f(b_n)>0 f(an)<0,f(bn)>0,故由极限保号性推论

f ( ξ ) = lim ⁡ n → ∞ f ( a n ) ⩽ 0   , f ( ξ ) = lim ⁡ n → ∞ f ( b n ) ⩾ 0 f(\xi)=\lim\limits_{n\to\infty}f(a_n)\leqslant 0\ ,f(\xi)=\lim\limits_{n\to\infty}f(b_n)\geqslant 0 f(ξ)=nlimf(an)0 ,f(ξ)=nlimf(bn)0

从而

∃ ξ ∈ ( a , b ) ,   s . t . f ( ξ ) = 0 \exists\xi\in(a,b),\ \mathrm{s.t.}f(\xi)=0 ξ(a,b), s.t.f(ξ)=0

1.4 介值定理

Theorem \textbf{Theorem} Theorem 介值定理

f ∈ C [ a , b ] f\in C[a,b] fC[a,b],则 ∀ η ∈ [ m , M ] : ∃ ξ ∈ [ a , b ] , s . t . f ( ξ ) = η \forall\eta\in[m,M]:\exists \xi\in[a,b],\mathrm{s.t.}f(\xi)=\eta η[m,M]:ξ[a,b],s.t.f(ξ)=η

Proof: \color{blue}{\textbf{Proof:}} Proof:

由最值定理可知, ∃ ξ 1 , ξ 2 ∈ [ a , b ] , s . t . \exists\xi_1,\xi_2\in [a,b],\mathrm{s.t.} ξ1,ξ2[a,b],s.t.

f ( ξ 1 ) = min ⁡ x ∈ [ a , b ] f ( x ) ⩽ f ( x ) ⩽ max ⁡ x ∈ [ a , b ] f ( x ) = f ( ξ 2 ) f(\xi_1)=\min\limits_{x\in[a,b]}f(x)\leqslant f(x)\leqslant \max\limits_{x\in[a,b]}f(x)=f(\xi_2) f(ξ1)=x[a,b]minf(x)f(x)x[a,b]maxf(x)=f(ξ2)

φ ( x ) : = f ( x ) − η \varphi(x):=f(x)-\eta φ(x):=f(x)η,其中 η ∈ f ( [ a , b ] ) \eta\in f([a,b]) ηf([a,b]),则

φ ( ξ 1 ) = f ( ξ 1 ) − η ⩽ 0   , φ ( ξ 2 ) = f ( ξ 2 ) − η ⩾ 0 \varphi(\xi_1)=f(\xi_1)-\eta\leqslant 0\ ,\varphi(\xi_2)=f(\xi_2)-\eta\geqslant 0 φ(ξ1)=f(ξ1)η0 ,φ(ξ2)=f(ξ2)η0

由零点存在定理

∃ ξ ∈ [ min ⁡ { ξ 1 , ξ 2 } , max ⁡ { ξ 1 , ξ 2 } ] ⊆ [ a , b ] , s . t . f ( ξ ) = η \exists \xi\in[\min\{\xi_1,\xi_2\},\max\{\xi_1,\xi_2\}]\subseteq [a,b],\mathrm{s.t.}f(\xi)=\eta ξ[min{ξ1,ξ2},max{ξ1,ξ2}][a,b],s.t.f(ξ)=η

2 导函数定理

2.1 导数零点定理

Theorem \textbf{Theorem} Theorem 导数零点定理

f ∈ C [ a , b ] ∩ D ( a , b ) , f + ′ ( a ) ⋅ f − ′ ( b ) < 0 f\in C[a,b]\cap D(a,b),f_{+}'(a)\cdot f_{-}'(b)<0 fC[a,b]D(a,b),f+(a)f(b)<0,则 ∃ ξ ∈ ( a , b ) , s . t . f ′ ( ξ ) = 0 \exists \xi\in(a,b),\mathrm{s.t.}f'(\xi)=0 ξ(a,b),s.t.f(ξ)=0

Proof: \color{blue}{\textbf{Proof:}} Proof:

不妨设

f + ′ ( a ) = lim ⁡ x → a + f ( x ) − f ( a ) x − a > 0 f − ′ ( b ) = lim ⁡ x → b − f ( x ) − f ( b ) x − b < 0 f_+'(a)=\lim\limits_{x\to a^+}\frac{f(x)-f(a)}{x-a}>0 \\f_-'(b)=\lim\limits_{x\to b^-}\frac{f(x)-f(b)}{x-b}<0 f+(a)=xa+limxaf(x)f(a)>0f(b)=xblimxbf(x)f(b)<0

由极限局部保号性

∃ δ 1 > 0 , s . t .   ∀ x ∈ ( a , a + δ 1 ) : f ( x ) > f ( a ) ∃ δ 2 > 0 , s . t .   ∀ x ∈ ( b − δ 2 , b   ) : f ( x ) > f ( b ) \begin{aligned} &\exists \delta_1>0,\mathrm{s.t.}\ \forall x\in(a,a+\delta_1):f(x)>f(a) \\&\exists \delta_2>0,\mathrm{s.t.}\ \forall x\in(b-\delta_2,b\ ):f(x)>f(b) \end{aligned} δ1>0,s.t. x(a,a+δ1):f(x)>f(a)δ2>0,s.t. x(bδ2,b ):f(x)>f(b)

max ⁡ x ∈ [ a , b ] f ( x ) \max\limits_{x\in[a,b]}f(x) x[a,b]maxf(x) 只能在 ( a , b ) (a,b) (a,b) 内取得,于是

∃ ξ ∈ ( a , b ) , s . t . f ( ξ ) = max ⁡ x ∈ [ a , b ] f ( x ) \exists \xi\in(a,b),\mathrm{s.t.}f(\xi)=\max\limits_{x\in[a,b]}f(x) ξ(a,b),s.t.f(ξ)=x[a,b]maxf(x)

从而

∃ ξ ∈ ( a , b ) , s . t . f ′ ( ξ ) = 0 \exists\xi\in(a,b),\mathrm{s.t.}f'(\xi)=0 ξ(a,b),s.t.f(ξ)=0

2.2 导数介值定理

Theorem \textbf{Theorem} Theorem  Darboux \ \text{Darboux}  Darboux 定理(导数介值定理)

f ∈ D ( a , b ) f\in D(a,b) fD(a,b),则 ∀ η ∈ [ f + ′ ( a ) , f − ′ ( b ) ] : ∃ ξ ∈ ( a , b ) , s . t . f ′ ( ξ ) = μ \forall \eta\in[f_+'(a),f_-'(b)]:\exists \xi\in(a,b),\mathrm{s.t.}f'(\xi)=\mu η[f+(a),f(b)]:ξ(a,b),s.t.f(ξ)=μ

Proof: \color{blue}{\textbf{Proof:}} Proof:

φ ( x ) : = f ( x ) − μ x \varphi(x):=f(x)-\mu x φ(x):=f(x)μx

φ ′ ( x ) = f ′ ( x ) − μ   , φ + ′ ( a ) ⋅ φ − ′ ( b ) < 0 \varphi'(x)=f'(x)-\mu\ ,\varphi_+'(a)\cdot\varphi_-'(b)<0 φ(x)=f(x)μ ,φ+(a)φ(b)<0

由导数零点定理, ∃ ξ ∈ ( a , b ) ,   s . t . \exists \xi\in(a,b),\ \mathrm{s.t.} ξ(a,b), s.t.

φ ′ ( ξ ) = 0 ⇔ f ′ ( ξ ) = μ \varphi'(\xi)=0\Leftrightarrow f'(\xi)=\mu φ(ξ)=0f(ξ)=μ

3 中值定理

3.1 微分中值定理

3.1.1 Fermat 定理

Theorem \textbf{Theorem} Theorem  Fermat \ \text{Fermat}  Fermat 定理

f ( x ) f(x) f(x) ξ \xi ξ 处可导,且 ξ \xi ξ 为极值,则 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0

Proof: \color{blue}{\textbf{Proof:}} Proof:

不妨设 ξ \xi ξ f ( x ) f(x) f(x) 极大值点,由极大值定义

∀ x ∈ U ( ξ , δ ) : f ( ξ ) ⩾ f ( x ) \forall x\in U(\xi,\delta):f(\xi)\geqslant f(x) xU(ξ,δ):f(ξ)f(x)

∀ x ∈ U ± ( ξ , δ ) : f ( x ) − f ( a ) x − a ⩽ ⩾ 0 \forall x\in U_{\pm}(\xi,\delta):\frac{f(x)-f(a)}{x-a} \begin{array}{c} \leqslant\\ \geqslant\\ \end{array} 0 xU±(ξ,δ):xaf(x)f(a)0

于是

f ± ′ ( ξ ) = d e f lim ⁡ x → ξ ± f ( x ) − f ( a ) x − a ⩾ ⩽ 0 f_{\pm}'(\xi)\xlongequal{\mathrm{def}}\lim\limits_{x\to \xi^{\pm}}\frac{f(x)-f(a)}{x-a} \begin{array}{c} \geqslant\\ \leqslant\\ \end{array} 0 f±(ξ)def xξ±limxaf(x)f(a)0

f ( x ) f(x) f(x) ξ \xi ξ 处可导,故

f ± ′ ( ξ ) = f ′ ( ξ ) = 0 f_{\pm}'(\xi)=f'(\xi)=0 f±(ξ)=f(ξ)=0

同理可证极小值情况.

3.1.2 Rolle 中值定理

Theorem \textbf{Theorem} Theorem  Rolle \ \text{Rolle}  Rolle 中值定理

f ∈ C [ a , b ] ∩ D ( a , b ) , f ( a ) = f ( b ) f\in C[a,b]\cap D(a,b),f(a)=f(b) fC[a,b]D(a,b),f(a)=f(b),则 ∃ ξ ∈ ( a , b ) , s . t . f ′ ( ξ ) = 0 \exists \xi\in(a,b),\mathrm{s.t.}f'(\xi)=0 ξ(a,b),s.t.f(ξ)=0

Corollary \textbf{Corollary} Corollary 广义 Rolle \text{Rolle} Rolle 中值定理

f ∈ D ( a , b )   , lim ⁡ x → a + f ( x ) = lim ⁡ x → b − f ( x ) = A f\in D(a,b)\ ,\lim\limits_{x\to a^+}f(x)=\lim\limits_{x\to b^-}f(x)=A fD(a,b) ,xa+limf(x)=xblimf(x)=A,则 ∃ ξ ∈ ( a , b ) , s . t . f ′ ( ξ ) = 0 \exists \xi\in(a,b),\mathrm{s.t.}f'(\xi)=0 ξ(a,b),s.t.f(ξ)=0

其中 ( a , b ) (a,b) (a,b) 为有限区间或无穷区间, A A A 为有限值或无穷值.

Thm   Proof1: \color{blue}{\textbf{Thm Proof1:}} Thm Proof1:

∀ x ∈ ( a , b ) : f ′ ( x ) ≠ 0 \forall x\in(a,b):f'(x)\ne 0 x(a,b):f(x)=0,又 f ∈ C [ a , b ] f\in C[a,b] fC[a,b],所以 f ′ ( x ) > 0 f'(x)>0 f(x)>0 f ′ ( x ) < 0 f'(x)<0 f(x)<0,于是 f ( x ) f(x) f(x) 单调递增或递减,与 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b) 矛盾,故 ∃ ξ ∈ ( a , b ) , s . t . f ′ ( ξ ) = 0 \exists \xi\in(a,b),\mathrm{s.t.}f'(\xi)=0 ξ(a,b),s.t.f(ξ)=0.

Thm   Proof2: \color{blue}{\textbf{Thm Proof2:}} Thm Proof2:

由最值定理有

m = min ⁡ x ∈ [ a , b ] f ( x ) ⩽ f ( x ) ⩽ max ⁡ x ∈ [ a , b ] f ( x ) = M m=\min\limits_{x\in[a,b]}f(x)\leqslant f(x)\leqslant \max\limits_{x\in[a,b]}f(x)=M m=x[a,b]minf(x)f(x)x[a,b]maxf(x)=M

m = M m=M m=M f ( x ) f(x) f(x) 为常函数,故 f ′ ( x ) = 0 f'(x)=0 f(x)=0

m < M m<M m<M m m m M M M 至少有一个不同于 f ( a ) f(a) f(a),故 m , M m,M m,M 在区间 ( a , b ) (a,b) (a,b) 内部取得,不妨设 m ⩽ f ( a ) = f ( b ) < M m\leqslant f(a)=f(b)<M mf(a)=f(b)<M,此时 ∃ ξ ∈ ( a , b ) , s . t . M = f ( ξ ) \exists \xi\in(a,b),\mathrm{s.t.}M=f(\xi) ξ(a,b),s.t.M=f(ξ) 为极大值点,由 Fermat \text{Fermat} Fermat 引理可知, f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0.

Cor   Proof1: \color{blue}{\textbf{Cor Proof1:}} Cor Proof1:

(1) 当 A ∈ R A\in\mathbb{R} AR

f ( x ) ≡ A f(x)\equiv A f(x)A,则待证结论显然成立;

f ( x ) ≢ A f(x) \not\equiv A f(x)A,则

∃ x 0 ∈ ( a , b ) , s . t . f ( x 0 ) ≠ A \exists x_0\in(a,b),\mathrm{s.t.}f(x_0)\neq A x0(a,b),s.t.f(x0)=A

不妨设 f ( x 0 ) < A f(x_0)<A f(x0)<A,由介值定理有

∃ ξ 1 ∈ ( a , x 0 ) , ξ 2 ∈ ( x 0 , b ) , s . t . f ( ξ 1 ) = f ( ξ 2 ) ∈ ( f ( x 0 ) , A ) \exists\xi_1\in(a,x_0),\xi_2\in(x_0,b),\mathrm{s.t.}f(\xi_1)=f(\xi_2)\in(f(x_0),A) ξ1(a,x0),ξ2(x0,b),s.t.f(ξ1)=f(ξ2)(f(x0),A)

Rolle \text{Rolle} Rolle 定理可知

∃ ξ ∈ ( ξ 1 , ξ 2 ) ⊆ ( a , b ) , s . t . f ′ ( ξ ) = 0 \exists\xi\in(\xi_1,\xi_2)\subseteq (a,b),\mathrm{s.t.}f'(\xi)=0 ξ(ξ1,ξ2)(a,b),s.t.f(ξ)=0

(2) 当 A = ± ∞ A=\pm\infty A=±:同上第二种情况.

Cor   Proof2: \color{blue}{\textbf{Cor Proof2:}} Cor Proof2:

(1) 有限值,有限区间:

g ( x ) = {   A , x ∈ { a , b } f ( x ) , x ∈ ( a , b ) g(x)=\left\{\begin{array}{l} \ A\quad,x\in\{a,b\} \\f(x),x\in(a,b) \end{array}\right. g(x)={ A,x{a,b}f(x),x(a,b)

g ( a ) = lim ⁡ x → a + f ( x ) = g ( b ) = lim ⁡ x → b − f ( x ) = A g ( x ) ∈ C [ a , b ] g(a)=\lim\limits_{x\to a^+}f(x)=g(b)=\lim\limits_{x\to b^-}f(x)=A \\ g(x)\in C[a,b] g(a)=xa+limf(x)=g(b)=xblimf(x)=Ag(x)C[a,b]

Rolle \text{Rolle} Rolle 定理有, ∃ ξ ∈ ( a , b ) , s . t . g ′ ( ξ ) = 0 \exists \xi\in(a,b),\mathrm{s.t.}g'(\xi)=0 ξ(a,b),s.t.g(ξ)=0,又 ∀ x ∈ ( a , b ) : g ( x ) = f ( x ) \forall x\in(a,b):g(x)=f(x) x(a,b):g(x)=f(x),故 ∃ ξ ∈ ( a , b ) , s . t . f ′ ( ξ ) = 0 \exists \xi\in(a,b),\mathrm{s.t.}f'(\xi)=0 ξ(a,b),s.t.f(ξ)=0

(2) 有限值,无限区间:

g ( x ) = { f ( tan ⁡ x )   , x ∈ ( − π 2 , π 2 ) A , x = ± π 2 g(x)=\left\{\begin{array}{l} f(\tan x)\ ,x\in(-\frac{\pi}{2},\frac{\pi}{2}) \\\quad A\qquad,x=\pm \frac{\pi}{2} \end{array}\right. g(x)={f(tanx) ,x(2π,2π)A,x=±2π

f ( x ) ∈ D ( a , b ) ⇒ f ( x ) ∈ C ( a , b ) ⇒ g ( x ) = f ( tan ⁡ x ) ∈ C ( a , b ) f(x)\in D(a,b)\Rightarrow f(x)\in C(a,b)\Rightarrow g(x)=f(\tan x)\in C(a,b) f(x)D(a,b)f(x)C(a,b)g(x)=f(tanx)C(a,b)

(3) 无穷值:

g ( x ) = { arctan ⁡ f ( x )   , x ∈ ( a , b )   π   2 , x ∈ { a , b } g(x)=\left\{\begin{array}{l} \arctan{f(x)}\ ,x\in(a,b) \\\qquad\frac{\ \pi\ }{2}\qquad,x\in\{a,b\} \end{array}\right. g(x)={arctanf(x) ,x(a,b)2 π ,x{a,b}

f ( x ) ∈ D ( a , b ) ⇒ f ( x ) ∈ C ( a , b ) ⇒ g ( x ) = arctan ⁡ f ( x ) ∈ C ( a , b ) f(x)\in D(a,b)\Rightarrow f(x)\in C(a,b)\Rightarrow g(x)=\arctan{f(x)}\in C(a,b) f(x)D(a,b)f(x)C(a,b)g(x)=arctanf(x)C(a,b)

3.1.3 Lagrange 中值定理

Theorem \textbf{Theorem} Theorem  Lagrange \ \text{Lagrange}  Lagrange 中值定理

f ∈ C [ a , b ] ∩ D ( a , b ) f\in C[a,b]\cap D(a,b) fC[a,b]D(a,b),则 ∃ ξ ∈ ( a , b ) , s . t . \exists \xi\in(a,b),\mathrm{s.t.} ξ(a,b),s.t.
f ′ ( ξ ) = f ( b ) − f ( a ) b − a f'(\xi)=\frac{f(b)-f(a)}{b-a} f(ξ)=baf(b)f(a)

Thm   Proof: \color{blue}{\textbf{Thm Proof:}} Thm Proof:

φ ( x ) : = f ( x ) − f ( b ) − f ( a ) b − a ( x − a ) \varphi(x):=f(x)-\frac{f(b)-f(a)}{b-a}(x-a) φ(x):=f(x)baf(b)f(a)(xa)

φ ( a ) = φ ( b ) = f ( a ) \varphi(a)=\varphi(b)=f(a) φ(a)=φ(b)=f(a)

Rolle \text{Rolle} Rolle 定理可知, ∃ ξ ∈ ( a , b ) , s . t . \exists \xi\in(a,b),\mathrm{s.t.} ξ(a,b),s.t.

φ ′ ( ξ ) = f ′ ( ξ ) − f ( b ) − f ( a ) b − a = 0 ⇔ f ′ ( ξ ) = f ( b ) − f ( a ) b − a \varphi'(\xi)=f'(\xi)-\frac{f(b)-f(a)}{b-a}=0\Leftrightarrow f'(\xi)=\frac{f(b)-f(a)}{b-a} φ(ξ)=f(ξ)baf(b)f(a)=0f(ξ)=baf(b)f(a)

3.1.4 Cauchy 中值定理

Theorem \textbf{Theorem} Theorem  Cauchy \ \text{Cauchy}  Cauchy 中值定理
f ∈ C [ a , b ] ∩ D ( a , b )   ,   g ( a ) ≠ g ( b )   , ∀ x ∈ ( a , b ) : f ′ 2 + g ′ 2 ≠ 0 \displaystyle f\in C[a,b]\cap D(a,b)\ ,\ g(a)\ne g(b)\ ,\forall x\in(a,b):f'^2+g'^2\ne 0 fC[a,b]D(a,b) , g(a)=g(b) ,x(a,b):f′2+g′2=0,则 ∃ ξ ∈ ( a , b ) , s . t . \exists \xi\in(a,b),\mathrm{s.t.} ξ(a,b),s.t.

f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \frac{f'(\xi)}{g'(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)} g(ξ)f(ξ)=g(b)g(a)f(b)f(a)

Thm   Proof: \color{blue}{\textbf{Thm Proof:}} Thm Proof:

φ ( x ) : = [ f ( x ) − f ( a ) ] − f ( b ) − f ( a ) g ( b ) − g ( a ) [ g ( x ) − g ( a ) ] \varphi(x):=[f(x)-f(a)]-\frac{f(b)-f(a)}{g(b)-g(a)}[g(x)-g(a)] φ(x):=[f(x)f(a)]g(b)g(a)f(b)f(a)[g(x)g(a)]

φ ( a ) = φ ( b ) = 0 \varphi(a)=\varphi(b)=0 φ(a)=φ(b)=0

Rolle \text{Rolle} Rolle 定理, ∃ ξ ∈ ( a , b ) , s . t . \exists \xi\in(a,b),\mathrm{s.t.} ξ(a,b),s.t.

φ ′ ( ξ ) = f ′ ( ξ ) − f ( b ) − f ( a ) g ( b ) − g ( a ) g ′ ( ξ ) = 0 ⇔ f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \varphi'(\xi)=f'(\xi)-\frac{f(b)-f(a)}{g(b)-g(a)}g'(\xi)=0\Leftrightarrow \frac{f'(\xi)}{g'(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)} φ(ξ)=f(ξ)g(b)g(a)f(b)f(a)g(ξ)=0g(ξ)f(ξ)=g(b)g(a)f(b)f(a)

3.1.5 Taylor 中值定理

Theorem \textbf{Theorem} Theorem  Taylor \ \text{Taylor}  Taylor 中值定理

f ∈ C n [ a , b ] ∩ D n + 1 ( a , b ) , ∀ x , x 0 ∈ [ a , b ] f\in C^n[a,b]\cap D^{n+1}(a,b),\forall x,x_0 \in[a,b] fCn[a,b]Dn+1(a,b),x,x0[a,b],则 ∃ ξ x = x 0 + θ ( x − x 0 ) , θ ∈ ( 0 , 1 ) , s . t . \exists \xi_x=x_0+\theta(x-x_0),\theta\in(0,1),\mathrm{s.t.} ξx=x0+θ(xx0),θ(0,1),s.t.

f ( x ) = ∑ k = 0 n f ( k ) ( x 0 ) k ! ( x − x 0 ) k + f ( n + 1 ) ( ξ x ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x)=\sum_{k=0}^{n}\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k+\frac{f^{(n+1)}(\xi_x)}{(n+1)!}(x-x_0)^{n+1} f(x)=k=0nk!f(k)(x0)(xx0)k+(n+1)!f(n+1)(ξx)(xx0)n+1

Thm   Proof: \color{blue}{\textbf{Thm Proof:}} Thm Proof:

G ( t ) : = f ( x ) − ∑ k = 0 n f ( k ) ( t ) k ! ( x − t ) k   ,   H ( t ) : = ( x − t ) n + 1 G(t):=f(x)-\sum_{k=0}^n\frac{f^{(k)}(t)}{k!}(x-t)^k\ ,\ H(t):=(x-t)^{n+1} G(t):=f(x)k=0nk!f(k)(t)(xt)k , H(t):=(xt)n+1

不妨设 x 0 < x x_0<x x0<x,则

G ( t ) , H ( t ) ∈ C [ x 0 , x ] ∩ D ( x 0 , x ) G(t),H(t)\in C[x_0,x]\cap D(x_0,x) G(t),H(t)C[x0,x]D(x0,x)

G ′ ( t ) = − f ( n + 1 ) ( x ) n ! ( x − t ) n   ,   H ′ ( t ) = − ( n + 1 ) ( x − t ) n G'(t)=-\frac{f^{(n+1)}(x)}{n!}(x-t)^n\ ,\ H'(t)=-(n+1)(x-t)^n G(t)=n!f(n+1)(x)(xt)n , H(t)=(n+1)(xt)n

Cauchy \text{Cauchy} Cauchy 中值定理可知, ∃ ξ ∈ ( x 0 , x ) , s . t . \exists \xi\in(x_0,x),\mathrm{s.t.} ξ(x0,x),s.t.

G ( x ) − G ( x 0 ) H ( x ) − H ( x 0 ) = G ′ ( ξ ) H ′ ( ξ ) ⇔ G ( x 0 ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! H ( x 0 ) \frac{G(x)-G(x_0)}{H(x)-H(x_0)}=\frac{G'(\xi)}{H'(\xi)}\Leftrightarrow G(x_0)=\frac{f^{(n+1)}(\xi)}{(n+1)!}H(x_0) H(x)H(x0)G(x)G(x0)=H(ξ)G(ξ)G(x0)=(n+1)!f(n+1)(ξ)H(x0)

3.1.6 Flett 中值定理

Theorem \textbf{Theorem} Theorem  Flett \ \text{Flett}  Flett 中值定理

f ∈ D ( a , b )   , f ′ ( a ) = f ′ ( b ) \displaystyle f\in D(a,b)\ ,f'(a)=f'(b) fD(a,b) ,f(a)=f(b),则 ∃ ξ ∈ ( a , b ) , s . t . \exists \xi\in(a,b),\mathrm{s.t.} ξ(a,b),s.t.
f ′ ( ξ ) = f ( ξ ) − f ( a ) ξ − a f'(\xi)=\frac{f(\xi)-f(a)}{\xi-a} f(ξ)=ξaf(ξ)f(a)

Thm   Proof: \color{blue}{\textbf{Thm Proof:}} Thm Proof:

h ( x ) = { f ( x ) − f ( a ) x − a , x ∈ ( a , b ] f ′ ( a ) , x = a ∈ C [ a , b ] ∩ D ( a , b ] h(x)=\left\{ \begin{array}{c} \displaystyle\frac{f(x) -f(a)}{x-a} ,x\in(a,b]\\ \\ f'(a) \qquad,x=a\\ \end{array} \right. \in C[a,b]\cap D(a,b] h(x)= xaf(x)f(a),x(a,b]f(a),x=aC[a,b]D(a,b]

∀ x ∈ ( a , b ] : h ′ ( x ) = f ′ ( x ) − f ( x ) − f ( a ) x − a x − a \forall x\in(a,b]:h'(x)=\frac{f'(x)-\frac{f(x)-f(a)}{x-a}}{x-a} x(a,b]:h(x)=xaf(x)xaf(x)f(a)

(1) 若 h ( a ) = h ( b ) h(a)=h(b) h(a)=h(b),则由 Rolle \text{Rolle} Rolle 定理, ∃ ξ ∈ ( a , b ) , s . t . h ′ ( ξ ) = 0 \exists\xi\in(a,b),\mathrm{s.t.}h'(\xi)=0 ξ(a,b),s.t.h(ξ)=0,得证;

(2) 若 h ( a ) < h ( b ) h(a)<h(b) h(a)<h(b),假设 ∀ x ∈ ( a , b ) : h ′ ( x ) ≠ 0 \forall x\in(a,b):h'(x)\ne 0 x(a,b):h(x)=0,则 h ( x ) h(x) h(x) 必然严格单增,且

h ′ ( b ) = f ′ ( b ) − h ( b ) b − a = f ′ ( a ) − h ( b ) b − a = h ( a ) − h ( b ) b − a < 0 h'(b)=\frac{f'(b)-h(b)}{b-a}=\frac{f'(a)-h(b)}{b-a}=\frac{h(a)-h(b)}{b-a}<0 h(b)=baf(b)h(b)=baf(a)h(b)=bah(a)h(b)<0

由极限局部保号性

∃ c ∈ ( b − δ , b ) , s . t .   h ( c ) > h ( b ) \exists c\in(b-\delta,b),\mathrm{s.t.}\ h(c)>h(b) c(bδ,b),s.t. h(c)>h(b)

h ( x ) ↑ h(x)\uparrow h(x) 矛盾,故假设不成立, ∃ ξ ∈ ( a , b ) , s . t . h ′ ( ξ ) = 0 \exists\xi\in(a,b),\mathrm{s.t.}h'(\xi)=0 ξ(a,b),s.t.h(ξ)=0,得证;

(3) 若 h ( a ) > h ( b ) h(a)>h(b) h(a)>h(b),则 h ′ ( b ) > 0 h'(b)>0 h(b)>0,故 ∃ c ∈ ( b − δ , b ) , s . t .   h ( c ) < h ( b ) < h ( a ) \exists c\in(b-\delta,b),\mathrm{s.t.}\ h(c)<h(b)<h(a) c(bδ,b),s.t. h(c)<h(b)<h(a),于是 h ( x ) h(x) h(x) 极小值在 ( a , b ) (a,b) (a,b) 内部取得,由 Fermat \text{Fermat} Fermat 定理, ∃ ξ ∈ ( a , b ) , s . t . h ′ ( ξ ) = 0 \exists\xi\in(a,b),\mathrm{s.t.}h'(\xi)=0 ξ(a,b),s.t.h(ξ)=0,得证.

3.2 积分中值定理

3.2.1 积分第一中值定理

Theorem \textbf{Theorem} Theorem 积分第一中值定理

f ∈ C [ a , b ]   , g ∈ R [ a , b ]   , g f\in C[a,b]\ ,g\in R[a,b]\ ,g fC[a,b] ,gR[a,b] ,g [ a , b ] [a,b] [a,b] 不变号,则 ∃ ξ ∈ [ a , b ] , s . t . \exists \xi\in [a,b],\mathrm{s.t.} ξ[a,b],s.t.
∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x \int_a^bf(x)g(x)\mathrm{d}x=f(\xi)\int_a^bg(x)\mathrm{d}x abf(x)g(x)dx=f(ξ)abg(x)dx
Corollary \textbf{Corollary} Corollary 积分第一中值定理-开区间推广

f , g ∈ R [ a , b ]   , g f,g\in R[a,b]\ ,g f,gR[a,b] ,g [ a , b ] [a,b] [a,b] 不变号,则 ∃ ξ ∈ ( a , b ) , s . t . \exists \xi\in (a,b),\mathrm{s.t.} ξ(a,b),s.t.
∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x \int_a^bf(x)g(x)\mathrm{d}x=f(\xi)\int_a^bg(x)\mathrm{d}x abf(x)g(x)dx=f(ξ)abg(x)dx

Thm   Proof: \color{blue}{\textbf{Thm Proof:}} Thm Proof:

不妨设 ∀ x ∈ [ a , b ] : g ( x ) ⩾ 0 \forall x\in [a,b]:g(x)\geqslant0 x[a,b]:g(x)0,则

∫ a b g ( x ) d x ⩾ 0 \int_a^bg(x)\mathrm{d}x\geqslant 0 abg(x)dx0

由最值定理有, m ⩽ f ( x ) ⩽ M m \leqslant f(x)\leqslant M mf(x)M,故

m ∫ a b g ( x ) d x ⩽ ∫ a b f ( x ) g ( x ) d x ⩽ M ∫ a b g ( x ) d x m\int_a^bg(x)\mathrm{d}x\leqslant \int_a^bf(x)g(x)\mathrm{d}x\leqslant M\int_a^bg(x)\mathrm{d}x mabg(x)dxabf(x)g(x)dxMabg(x)dx

∫ a b g ( x ) d x = 0 \displaystyle\int_a^bg(x)\mathrm{d}x=0 abg(x)dx=0,结论显然成立;若 ∫ a b g ( x ) d x > 0 \displaystyle\int_a^bg(x)\mathrm{d}x>0 abg(x)dx>0,则

m   ⩽   ∫ a b f ( x ) g ( x ) d x ∫ a b g ( x ) d x   ⩽   M m\ \leqslant\ \frac{\int_a^bf(x)g(x)\mathrm{d}x}{\int_a^bg(x)\mathrm{d}x}\ \leqslant\ M m  abg(x)dxabf(x)g(x)dx  M

由介值定理可知

∃ ξ ∈ ( a , b ) ,   s . t . f ( ξ ) = ∫ a b f ( x ) g ( x ) d x ∫ a b g ( x ) d x \exists\xi\in(a,b),\ \mathrm{s.t.}f(\xi)=\frac{\int_a^bf(x)g(x)\mathrm{d}x}{\int_a^bg(x)\mathrm{d}x} ξ(a,b), s.t.f(ξ)=abg(x)dxabf(x)g(x)dx

同理可证 g ( x ) ⩽ 0 g(x)\leqslant 0 g(x)0 情形.

Cor   Proof1: \color{blue}{\textbf{Cor Proof1:}} Cor Proof1:

F ( x ) : = ∫ a x f ( t ) g ( t ) d t   ,   G ( x ) : = ∫ a x g ( t ) d t F(x):=\int_a^xf(t)g(t)\mathrm{d}t\ ,\ G(x):=\int_a^xg(t)\mathrm{d}t F(x):=axf(t)g(t)dt , G(x):=axg(t)dt

由于 f , g ∈ R [ a , b ] f,g\in R[a,b] f,gR[a,b] g ( x ) g(x) g(x) 不变号,故

F ( x ) , G ( x ) ∈ C [ a , b ] ∩ D ( a , b ) F(x),G(x)\in C[a,b]\cap D(a,b) F(x),G(x)C[a,b]D(a,b)

Cauchy \text{Cauchy} Cauchy 中值定理, ∃ ξ ∈ ( a , b ) ,   s . t . \exists\xi\in(a,b),\ \mathrm{s.t.} ξ(a,b), s.t.

F ( b ) − F ( a ) G ( b ) − G ( a ) = F ′ ( ξ ) G ′ ( ξ ) ⇔ ∫ a b f ( x ) g ( x ) d x ∫ a b g ( x ) d x = f ( ξ ) \frac{F(b)-F(a)}{G(b)-G(a)}=\frac{F'(\xi)}{G'(\xi)}\Leftrightarrow\frac{\int_a^bf(x)g(x)\mathrm{d}x}{\int_a^bg(x)\mathrm{d}x}=f(\xi) G(b)G(a)F(b)F(a)=G(ξ)F(ξ)abg(x)dxabf(x)g(x)dx=f(ξ)

Cor   Proof2: \color{blue}{\textbf{Cor Proof2:}} Cor Proof2:

φ ( x ) : = ∫ a x f ( t ) g ( t ) d t − K ∫ a x g ( t ) d t   ,   K = ∫ a b f ( x ) g ( x ) d x ∫ a b g ( x ) d x \varphi(x):=\int_a^xf(t)g(t)\mathrm{d}t-K\int_a^xg(t)\mathrm{d}t\ ,\ K=\frac{\int_a^bf(x)g(x)\mathrm{d}x}{\int_a^bg(x)\mathrm{d}x} φ(x):=axf(t)g(t)dtKaxg(t)dt , K=abg(x)dxabf(x)g(x)dx

φ ( a ) = φ ( b ) = 0 \varphi(a)=\varphi(b)=0 φ(a)=φ(b)=0,由 Rolle \text{Rolle} Rolle 定理可知

∃ ξ ∈ ( a , b ) ,   s . t .   φ ′ ( ξ ) = f ( ξ ) g ( ξ ) − K g ( ξ ) \exists \xi\in(a,b),\ \mathrm{s.t.}\ \varphi'(\xi)=f(\xi)g(\xi)-Kg(\xi) ξ(a,b), s.t. φ(ξ)=f(ξ)g(ξ)Kg(ξ)

g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b] 不变号,故

f ( ξ ) = K f(\xi)=K f(ξ)=K

3.2.2 积分第二中值定理

Theorem \textbf{Theorem} Theorem 积分第二中值定理

g ∈ C [ a , b ] , f ∈ D [ a , b ] g\in C[a,b],f\in D[a,b] gC[a,b],fD[a,b] 单调递增、减且非负,则 ∃ ξ ∈ [ a , b ] , s . t . \exists \xi\in [a,b],\mathrm{s.t.} ξ[a,b],s.t.

∫ a b f ( x ) g ( x ) d x = f ( b ) ∫ ξ b g ( x ) d x ∫ a b f ( x ) g ( x ) d x = f ( a ) ∫ a ξ g ( x ) d x (3.2.2-1) \tag*{(3.2.2-1)} \int_a^bf(x)g(x)\mathrm{d}x=f(b)\int_{\xi}^bg(x)\mathrm{d}x \\\int_a^bf(x)g(x)\mathrm{d}x=f(a)\int_a^{\xi}g(x)\mathrm{d}x abf(x)g(x)dx=f(b)ξbg(x)dxabf(x)g(x)dx=f(a)aξg(x)dx(3.2.2-1)

g ∈ C [ a , b ] , f ∈ D [ a , b ] g\in C[a,b],f\in D[a,b] gC[a,b],fD[a,b] 单调,则 ∃ ξ ∈ [ a , b ] , s . t . \exists \xi\in [a,b],\mathrm{s.t.} ξ[a,b],s.t.

∫ a b f ( x ) g ( x ) d x = f ( a ) ∫ a ξ g ( x ) d x + f ( b ) ∫ ξ b g ( x ) d x (3.2.2-2) \tag*{(3.2.2-2)} \int_a^bf(x)g(x)\mathrm{d}x=f(a)\int_a^{\xi}g(x)\mathrm{d}x+f(b)\int_{\xi}^bg(x)\mathrm{d}x abf(x)g(x)dx=f(a)aξg(x)dx+f(b)ξbg(x)dx(3.2.2-2)

Corollary.1 \textbf{Corollary.1} Corollary.1 积分第二中值定理-条件削弱

g ∈ R [ a , b ] , f ( x ) g\in R[a,b],f(x) gR[a,b],f(x) [ a , b ] [a,b] [a,b] 单调递增、减且非负,则 ( 3.2.2 − 1 ) (3.2.2-1) (3.2.21) 成立.

g ∈ R [ a , b ] , f : [ a , b ] → R g\in R[a,b],f:[a,b]\to\mathbb{R} gR[a,b],f:[a,b]R 单调,则 ( 3.2.2 − 2 ) (3.2.2-2) (3.2.22) 成立.

Corollary.2 \textbf{Corollary.2} Corollary.2 积分第二中值定理-开区间推广

g ∈ R [ a , b ] , f ( x ) g\in R[a,b],f(x) gR[a,b],f(x) [ a , b ] [a,b] [a,b] 非负单调递增、减,在 ( a , b ) (a,b) (a,b) 内不恒为常数,则 ( 3.2.2 − 1 ) (3.2.2-1) (3.2.21) 成立.

g ∈ R [ a , b ] , f g\in R[a,b],f gR[a,b],f [ a , b ] [a,b] [a,b] 单调,在 ( a , b ) (a,b) (a,b) 不恒为常数,则 ( 3.2.2 − 2 ) (3.2.2-2) (3.2.22) 成立.

Thm.1   Proof: \color{blue}{\textbf{Thm.1 Proof:}} Thm.1 Proof:

G ( x ) : = ∫ x b g ( t ) d t G(x):=\int_x^bg(t)\mathrm{d}t G(x):=xbg(t)dt

∫ a b f ( x ) g ( x ) d x = I B P ∫ a b f ( x ) d [ − G ( x ) ] = − f ( x ) G ( x ) ∣ a b + ∫ a b G ( x ) f ′ ( x ) d x = f ( a ) G ( a ) + ∫ a b G ( x ) f ′ ( x ) d x \begin{aligned} \int_a^bf(x)g(x)\mathrm{d}x &\xlongequal{IBP}\int_a^bf(x)\mathrm{d}[-G(x)] \\&=-f(x)G(x)\mid_a^b+\int_a^bG(x)f'(x)\mathrm{d}x \\&=f(a)G(a)+\int_a^bG(x)f'(x)\mathrm{d}x \end{aligned} abf(x)g(x)dxIBP abf(x)d[G(x)]=f(x)G(x)ab+abG(x)f(x)dx=f(a)G(a)+abG(x)f(x)dx

由于 g ∈ R [ a , b ] ⇒ G ∈ C [ a , b ] ⇒ m ⩽ G ( x ) ⩽ M g\in R[a,b]\Rightarrow G\in C[a,b]\Rightarrow m\leqslant G(x)\leqslant M gR[a,b]GC[a,b]mG(x)M,故

f ( a ) m + m ∫ a b f ′ ( x ) d x ⩽ f ( a ) G ( a ) + ∫ a b G ( x ) f ′ ( x ) d x ⩽ f ( a ) M + M ∫ a b f ′ ( x ) d x f(a)m+m\int_a^bf'(x)\mathrm{d}x\leqslant f(a)G(a)+\int_a^bG(x)f'(x)\mathrm{d}x\leqslant f(a)M+M\int_a^bf'(x)\mathrm{d}x f(a)m+mabf(x)dxf(a)G(a)+abG(x)f(x)dxf(a)M+Mabf(x)dx

m f ( b )   ⩽   ∫ a b f ( x ) g ( x ) d x   ⩽   M f ( b ) mf(b)\ \leqslant\ \int_a^bf(x)g(x)\mathrm{d}x\ \leqslant\ Mf(b) mf(b)  abf(x)g(x)dx  Mf(b)

f ( b ) = 0 f(b)=0 f(b)=0 时, 0 ⩽ f ( x ) ↑   ⩽ f ( b ) = 0 ⇒ f ( x ) = 0 0\leqslant f(x)\uparrow\ \leqslant f(b)=0\Rightarrow f(x)=0 0f(x) f(b)=0f(x)=0,任取 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b) 结论均成立;

f ( b ) ≠ 0 f(b)\ne 0 f(b)=0 时,有

m   ⩽   ∫ a b f ( x ) g ( x ) d x f ( b )   ⩽   M m\ \leqslant\ \frac{\int_a^bf(x)g(x)\mathrm{d}x}{f(b)}\ \leqslant\ M m  f(b)abf(x)g(x)dx  M

由介值定理可知, ∃ ξ ∈ [ a , b ] , s . t . \exists \xi\in [a,b],\mathrm{s.t.} ξ[a,b],s.t.

G ( ξ ) = ∫ a b f ( x ) g ( x ) d x f ( b ) G(\xi)=\frac{\int_a^bf(x)g(x)\mathrm{d}x}{f(b)} G(ξ)=f(b)abf(x)g(x)dx

∫ a b f ( x ) g ( x ) d x = f ( b ) G ( ξ ) = f ( b ) ∫ ξ b g ( x ) d x \int_a^bf(x)g(x)\mathrm{d}x=f(b)G(\xi)=f(b)\int_\xi^bg(x)\mathrm{d}x abf(x)g(x)dx=f(b)G(ξ)=f(b)ξbg(x)dx

同理可证递减情形.

Thm.2   Proof: \color{blue}{\textbf{Thm.2 Proof:}} Thm.2 Proof:

G ( x ) : = ∫ a x g ( t ) d t G(x):=\int_a^xg(t)\mathrm{d}t G(x):=axg(t)dt

∫ a b f ( x ) g ( x ) d x = I B P ∫ a b f ( x ) d [ G ( x ) ] = f ( b ) G ( b ) − ∫ a b G ( x ) f ′ ( x ) d x = f ( b ) ∫ a b g ( t ) d t − ∫ a b G ( x ) f ′ ( x ) d x \begin{aligned} \int_a^bf(x)g(x)\mathrm{d}x&\xlongequal{IBP}\int_a^bf(x)\mathrm{d}[G(x)] \\&=f(b)G(b)-\int_a^bG(x)f'(x)\mathrm{d}x \\&=f(b)\int_a^bg(t)\mathrm{d}t-\int_a^bG(x)f'(x)\mathrm{d}x \end{aligned} abf(x)g(x)dxIBP abf(x)d[G(x)]=f(b)G(b)abG(x)f(x)dx=f(b)abg(t)dtabG(x)f(x)dx

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 单调,故 f ′ ( x ) f'(x) f(x) 不变号,则由积分第一中值定理 ∃ ξ ∈ ( a , b ) , s . t . \exists\xi\in (a,b),\mathrm{s.t.} ξ(a,b),s.t.

∫ a b G ( x ) f ′ ( x ) d x = G ( ξ ) ∫ a b f ′ ( x ) d x = [ f ( b ) − f ( a ) ] ∫ a ξ g ( t ) d t \int_a^bG(x)f'(x)\mathrm{d}x=G(\xi)\int_a^bf'(x)\mathrm{d}x=[f(b)-f(a)]\int_a^\xi g(t)\mathrm{d}t abG(x)f(x)dx=G(ξ)abf(x)dx=[f(b)f(a)]aξg(t)dt

于是

∫ a b f ( x ) g ( x ) d x = f ( b ) ∫ a b g ( t ) d t − [ f ( b ) − f ( a ) ] ∫ a ξ g ( t ) d t = f ( b ) ⋅ ( ∫ a b − ∫ a ξ ) g ( t ) d t + f ( a ) ∫ a ξ g ( t ) d x = f ( b ) ∫ ξ b g ( x ) d x + f ( a ) ∫ a ξ g ( x ) d x \begin{aligned} \int_a^bf(x)g(x)\mathrm{d}x&=f(b)\int_a^bg(t)\mathrm{d}t-[f(b)-f(a)]\int_a^\xi g(t)\mathrm{d}t \\&=f(b)\cdot (\int_a^b-\int_a^{\xi}) g(t)\mathrm{d}t+f(a)\int_a^{\xi}g(t)\mathrm{d}x \\&=f(b)\int_{\xi}^bg(x)\mathrm{d}x+f(a)\int_a^{\xi}g(x)\mathrm{d}x \end{aligned} abf(x)g(x)dx=f(b)abg(t)dt[f(b)f(a)]aξg(t)dt=f(b)(abaξ)g(t)dt+f(a)aξg(t)dx=f(b)ξbg(x)dx+f(a)aξg(x)dx

Cor.1   Proof: \color{blue}{\textbf{Cor.1 Proof:}} Cor.1 Proof:

设点集 P = { x k ( k = 1 , 2 , ⋯   , n ) } P=\{x_k(k=1,2,\cdots,n)\} P={xk(k=1,2,,n)} 为区间 [ a , b ] [a,b] [a,b] 的任意分划,则

a = x 0 < x 1 < ⋯ < x n − 1 < x n = b a=x_0<x_1<\cdots<x_{n-1}<x_n=b a=x0<x1<<xn1<xn=b

∫ a b f ( x ) g ( x ) d x = ∑ k = 0 n − 1 ∫ x k x k + 1 f ( x ) g ( x ) d x = ∑ k = 0 n − 1 ∫ x k x k + 1 { f ( x k ) + [ f ( x ) − f ( x k ) ] } g ( x ) d x = ∑ k = 0 n − 1 { f ( x k ) ∫ x k x k + 1 g ( x ) d x + ∫ x k x k + 1 [ f ( x ) − f ( x k ) ] g ( x ) d x } = I 1 + I 2 \begin{aligned} \int_a^bf(x)g(x)\mathrm{d}x&=\sum_{k=0}^{n-1}\int_{x_k}^{x_{k+1}}f(x)g(x)\mathrm{d}x \\&=\sum_{k=0}^{n-1}\int_{x_k}^{x_{k+1}}\{f(x_k)+[f(x)-f(x_k)]\}g(x)\mathrm{d}x \\&=\sum_{k=0}^{n-1}\left\{f(x_k)\int_{x_k}^{x_{k+1}}g(x)\mathrm{d}x+\int_{x_k}^{x_{k+1}}[f(x)-f(x_k)]g(x)\mathrm{d}x\right\} \\&=I_1+I_2 \end{aligned} abf(x)g(x)dx=k=0n1xkxk+1f(x)g(x)dx=k=0n1xkxk+1{f(xk)+[f(x)f(xk)]}g(x)dx=k=0n1{f(xk)xkxk+1g(x)dx+xkxk+1[f(x)f(xk)]g(x)dx}=I1+I2

对于 I 1 I_1 I1:令 G ( x ) : = ∫ a x g ( t ) d t \displaystyle G(x):=\int_a^xg(t)\mathrm{d}t G(x):=axg(t)dt,有

I 1 = ∑ k = 0 n − 1 f ( x k ) ∫ x k x k + 1 g ( x ) d x = ∑ k = 0 n − 1 f ( x k ) [ ∫ a x k + 1 g ( t ) d t − ∫ a x k g ( t ) d t ] = ∑ k = 0 n − 1 f ( x k ) [ G ( x k + 1 ) − G ( x k ) ] = − f ( x 0 ) G ( x 0 ) + ∑ k = 1 n − 1 G ( x k ) [ f ( x k − 1 ) − f ( x k ) ] + G ( x n ) f ( x n − 1 ) \begin{aligned} I_1&=\sum_{k=0}^{n-1}f(x_k)\int_{x_k}^{x_{k+1}}g(x)\mathrm{d}x \\&=\sum_{k=0}^{n-1}f(x_k)\left[\int_{a}^{x_{k+1}}g(t)\mathrm{d}t-\int_{a}^{x_k}g(t)\mathrm{d}t\right] \\&=\sum_{k=0}^{n-1}f(x_k)[G(x_{k+1})-G(x_k)] \\&=-f(x_0)G(x_0)+\sum_{k=1}^{n-1}G(x_k)[f(x_{k-1})-f(x_k)]+G(x_n)f(x_{n-1}) \end{aligned} I1=k=0n1f(xk)xkxk+1g(x)dx=k=0n1f(xk)[axk+1g(t)dtaxkg(t)dt]=k=0n1f(xk)[G(xk+1)G(xk)]=f(x0)G(x0)+k=1n1G(xk)[f(xk1)f(xk)]+G(xn)f(xn1)

g ∈ R [ a , b ] ⇒ G ∈ C [ a , b ] g\in R[a,b]\Rightarrow G\in C[a,b] gR[a,b]GC[a,b],所以 G ( x ) G(x) G(x) 存在最值,于是

I 1 ⩽ M ∑ k = 1 n − 1 [ f ( x k − 1 ) − f ( x k ) ] + M f ( x n − 1 ) = M f ( x 0 ) = M f ( a ) I 1 ⩾ m ∑ k = 1 n − 1 [ f ( x k − 1 ) − f ( x k ) ] + m f ( x n − 1 ) = m f ( x 0 ) = m f ( a ) \begin{aligned} I_1&\leqslant M\sum_{k=1}^{n-1}[f(x_{k-1})-f(x_k)]+Mf(x_{n-1})=Mf(x_0)=Mf(a) \\I_1&\geqslant m\sum_{k=1}^{n-1}[f(x_{k-1})-f(x_k)]+mf(x_{n-1})=mf(x_0)=mf(a) \end{aligned} I1I1Mk=1n1[f(xk1)f(xk)]+Mf(xn1)=Mf(x0)=Mf(a)mk=1n1[f(xk1)f(xk)]+mf(xn1)=mf(x0)=mf(a)

从而

m f ( a ) ⩽ I 1 ⩽ M f ( a ) mf(a)\leqslant I_1\leqslant Mf(a) mf(a)I1Mf(a)

对于 I 2 I_2 I2

0 ⩽ ∣ I 2 ∣ = ∣ ∑ k = 0 n − 1 ∫ x k x k + 1 [ f ( x ) − f ( x k ) ] g ( x ) d x ∣ ⩽ ∑ k = 0 n − 1 ∫ x k x k + 1 ∣ f ( x ) − f ( x k ) ∣ ∣ g ( x ) ∣ d x ⩽ ∑ k = 0 n − 1 ∫ x k x k + 1 ∣ sup ⁡ f ( x ) x ∈ [ x k , x k + 1 ] − inf ⁡ f ( x ) x ∈ [ x k , x k + 1 ] ∣ ⋅ sup ⁡ x ∈ [ a , b ] ∣ g ( x ) ∣ d x = sup ⁡ x ∈ [ a , b ] ∣ g ( x ) ∣ ⋅ ∑ k = 0 n − 1 ω k Δ x k \begin{aligned} 0\leqslant |I_2|&=|\sum_{k=0}^{n-1}\int_{x_{k}}^{x_{k+1}}[f(x)-f(x_k)]g(x)\mathrm{d}x| \\&\leqslant \sum_{k=0}^{n-1}\int_{x_k}^{x_{k+1}}|f(x)-f(x_k)||g(x)|\mathrm{d}x \\&\leqslant \sum_{k=0}^{n-1}\int_{x_k}^{x_{k+1}}|\underset{x\in[x_k,x_{k+1}]}{\sup{f(x)}}-\underset{x\in[x_k,x_{k+1}]}{\inf{f(x)}}|\cdot\sup_{x\in[a,b]}|g(x)|\mathrm{d}x \\&=\sup_{x\in[a,b]}|g(x)|\cdot\sum_{k=0}^{n-1}\omega_k\Delta x_k \end{aligned} 0I2=k=0n1xkxk+1[f(x)f(xk)]g(x)dxk=0n1xkxk+1f(x)f(xk)∣∣g(x)dxk=0n1xkxk+1x[xk,xk+1]supf(x)x[xk,xk+1]inff(x)x[a,b]supg(x)dx=x[a,b]supg(x)k=0n1ωkΔxk

由于 f ( x ) f(x) f(x) 单调,故 f ∈ R [ a , b ] f\in R[a,b] fR[a,b],于是

lim ⁡ ∣ ∣ P ∣ ∣ → 0 ∑ k = 0 n − 1 ω k Δ x k = 0 \lim\limits_{||P||\to 0}\sum_{k=0}^{n-1}\omega_k\Delta x_k=0 ∣∣P∣∣0limk=0n1ωkΔxk=0

从而

lim ⁡ ∣ ∣ P ∣ ∣ → 0 I 2 = 0 \lim\limits_{||P||\to 0}I_2=0 ∣∣P∣∣0limI2=0

综上,当 ∣ ∣ P ∣ ∣ = max ⁡ 1 ⩽ k ⩽ n Δ x k → 0 ||P||=\max\limits_{{1\leqslant k\leqslant n}}\Delta x_k\to 0 ∣∣P∣∣=1knmaxΔxk0

m f ( a ) ⩽ ∫ a b f ( x ) g ( x ) d x ⩽ M f ( a ) mf(a)\leqslant \int_a^bf(x)g(x)\mathrm{d}x \leqslant Mf(a) mf(a)abf(x)g(x)dxMf(a)

由介值定理, ∃ ξ ∈ [ a , b ] ,   s . t . \exists\xi\in[a,b],\ \mathrm{s.t.} ξ[a,b], s.t.

G ( ξ ) = ∫ a b f ( x ) g ( x ) d x f ( a ) G(\xi)=\frac{\int_a^bf(x)g(x)\mathrm{d}x}{f(a)} G(ξ)=f(a)abf(x)g(x)dx

得证.

Cor.2   Proof: \color{blue}{\textbf{Cor.2 Proof:}} Cor.2 Proof:

见文献 [1] 刘小茂,张钧.关于积分第二中值定理的讨论[J].武汉汽车工业大学学报,1996,(第3期).

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值