PAIRWISE LINKAGE FOR POINT CLOUD SEGMENTATION论文解读

聚类算法总结:

基于边缘的:

基于边缘/边界的方法试图检测形成封闭边界的表面中的不连续,然后在识别的边界和连接的边缘内对点进行分组,这些方法通常应用于深度图,其中边缘被定义为局部表面属性变化超过给定阈值的点。局部表面性质主要是表面法线、梯度、主曲率或高阶导数(Sappa和Devy, 2001, Wani和Arabnia, 2003)。
但是由于噪声或者三维空间中点分布的不连续,这种方法通常检测到不连接的边缘,这使得它们很难在没有填充或解释程序的情况下识别闭合的片段(Castillo等人,2013)。

基于区域生长的:

基于区域生长的方法通过检测具有均匀几何性质的连续曲面来处理分割。在对非结构化三维点云的分割中,这些方法首先选择一个种子点并从中生长区域,如果种子点的局部邻域在方向、曲率等面点属性上具有相似性,则与种子点进行组合。平滑连通区域是基于区域生长方法的关键。曲面法线和曲率约束被广泛用于寻找光滑连通区域(Klasing et al, 2009, Belton and Lichti, 2006)。一般来说,基于区域生长的方法比基于边缘的方法对噪声的鲁棒性更强,因为它使用了全局信息(Liu and Xiong, 2008)。然而,这些方法对初始种子区域的位置很敏感,区域边界附近点的法线和曲率估计不准确会导致分割结果不准确,而且异常值也会导致过度分割和分割不足。
混合的:没有解决实际问题,这些混合方法的成功取决于其中一种或两种潜在方法的成功。

聚类方法:

这些算法可以分为两类:分区方法和分层方法。划分聚类算法通常通过一定的相似性度量将每个数据点划分到不同的聚类中。传统算法K-Means (MacQueen et al, 1967)和CLARANS (Ng and Han, 1994)属于这一类。层次方法通常通过迭代地将数据集分成更小的子集来创建数据集的层次分解,直到每个子集只包含一个对象,例如,单链接(SLink)方法及其变体(Sibson, 1973)。

本文创新点

P-Linkage聚类:

基于数据点应与其最近邻点(CNP)处于同一聚类中的假设,提出了一种新的Pairwise Linkage (P-Linkage)分层聚类方法。P-Linkage聚类:基于数据点应与其最近邻点(CNP)处于同一聚类中的假设,提出了一种新的Pairwise Linkage (P-Linkage)分层聚类方法,该方法能够简单有效地发现聚类。首先,在数据点级别上应用成对链接程序将每个数据点与其CNP链接起来。然后,通过从局部密度最大的点开始,沿着成对链接搜索,可以发现初始簇。

点云分割:

基于所提出的P-Linkage聚类,我们开发了一种简单高效的点云分割算法,该算法只需要一个参数,可应用于大量非结构化的车载、航空和固定式激光扫描点云。点云分割中的P-Linkage聚类以三维点估计曲面的平整度为特征值,沿连杆点数据采集形成初始聚类。对于每个初始集群,我们创建一个切片。所有的切片合并在一个简单或有效的策略,以获得最终的分割结果

P-Linkage聚类方法的关键概念:

一个数据点pi应该与它最近的邻居pj处于同一聚类中,pj更有可能成为聚类中心,pi和pj之间的这种关系称为成对链接。其中一个数据点只需要与它的邻居进行比较,如果它不是local- maximum,则将被抑制。事实上,P-Linkage聚类弥补了数据点的局部信息与全局信息之间的差距,这使得它比基于局部的聚类方法更健壮,比基于全局的聚类方法更高效。

参数说明

Cutoff Distance:

对于每个数据点pi, pi与其最近邻居之间的距离被记录在Dcn中,然后dc被计算为在这里插入图片描述
其中scale是一个定制的参数,这意味着截止距离dc是scale乘以集合Dcn的中值。这样,dc表示的邻域分布信息比设dc为d的1% - 2%-th要多得多。只有到pi的距离小于dc的数据点才被认为是pi的邻域集,记为Ii,如图2中绿色圆圈所示。

Density

(Rodriguez和Laio, 2014)将数据点的密度pi定义为其相邻数据点的数量,这是离散值,因此不适合我们要求密度为连续值的应用程序。在我们提出的方法中,通过对所有数据点应用高斯核来计算数据点pi的密度ρi,如下所示:
在这里插入图片描述
其中N表示所有数据点的数量,dij是两点pi和pj之间的距离。

具体操作:

利用所有数据点的密度,以非迭代的方式恢复Pairwise Linkage,具体操作如下。对于一个邻域集为Ii的数据点pi,我们遍历Ii中的每个点,找到最近且密度大于pi的数据点pj,然后我们认为数据点pi应该与pj在同一个聚类中,并记录数据点pi与pj之间的联系。如果pi的密度是局部极大的,也就是说Ii中不存在密度大于pi的数据点,我们认为pi是一个聚类中心。成对联动过程的结果包括一个记录联动关系的查找表T和一个记录所有集群中心的集合center。

分层聚类:

分层聚类是一个自上而下的过程,类似于分裂聚类算法。对于center中的每个聚类中心ci,我们开始以深度优先或宽度优先的方式从ci开始查找查找表T,以收集所有与ci直接或间接连接的数据点,从而生成一个中心为ci的聚类。整个分层聚类找到最后的聚类c。图2显示了分层聚类过程的一个示例。由图2可知,p1由于其局部密度最大而成为簇中心,(p1, p13)、(p13, p4)、(p4, p27)、(p27, p8)之间存在4个成对连杆。因此,按p1→p13→p4→p27→p8进行分层聚类。通过这种方法,聚类信息从密集的数据点传播到稀疏的数据点,类似于热传播。
在这里插入图片描述

聚类合并:

如图1所示,当数据点呈高斯分布时,通过两两联动的层次聚类可以很好地找到全局聚类中心并恢复聚类,但当存在一个或多个局部最大值(s)时,可能导致碎片化聚类结果失败。针对数据点分布的各种情况,提出了一种自定义聚类合并策略,分为以下三步。首先,对于每个聚类Cp,计算Cp中所有数据点的平均密度µp和标准差σp。其次,通过搜索相邻聚类之间的边界数据点,收集每个聚类Cp的相邻聚类;对于Cp中的每个数据点pi,其邻域集记为Ii。如果Ii中的一个数据点pj属于另一个簇Cq,则这两个簇被认为是一对相邻的簇,pi和pj分别记为Cp和Cq之间的相邻点。(相邻簇的认定)

在这里插入图片描述
第三,对于每个相邻簇对Cp和Cq, Cp和Cq相邻点的平均密度分别记为ρp a和ρq。合并簇的条件:
在这里插入图片描述
聚类合并是迭代进行的,即合并所有与起始聚类直接或间接相邻的聚类。

离群点

在(Ester et al, 1996)之前的工作中,离群点是指密度小于某一阈值的点。通过这种方法,低密度数据点可以被归类为异常值。在(Rodriguez and Laio, 2014)的工作中,离群点被认为是密度小于聚类边界区域最高密度的点,这意味着聚类边界区域的所有数据点都被丢弃为离群点。在我们的工作中,我们考虑集群级别上的异常值。如果一个数据点pi的密度是局部最大的,但小于所有数据点的中位数密度,中位数(ρ),那么与pi在同一聚类中的所有数据点都被认为是异常值。

总结

综上所述,本文提出的聚类方法在一般情况下无需合并,只需一步即可发现聚类和聚类中心。对于每一个密度为ρi的数据点pi,我们找到其密度大于pi的最近邻居点CN P (pi),并将其归到与CN P (pi)相同的聚类中。如果数据点pi的密度ρi是局部最大的并且大于平均密度ρ,我们将pi视为一个聚类中心。算法1详细描述了所提出的P-Linkage聚类方法的整个过程。

在这里插入图片描述

将Plinkge应用于点云聚类

点云的分割也可以表述为聚类问题,因为小表面上的数据点通常共享相似的正常值。

  1. 邻域是基于K个最近邻(KNN)而不是固定距离近邻;
  2. 特征值为估计曲面的平整度,而不是相邻曲面的密度;
  3. 用两个数据点的法向偏差代替欧几里得距离来测量两个数据点的距离。

法向量搜寻

在本文中,我们使用KNN方法来寻找每个数据点的邻居,并通过主成分分析(PCA)估计邻居曲面的法向量。该过程包含以下三个步骤。首先,我们通过应用ANN库构建k-d树(Mount and Arya, 2010)。对于每个数据点pi,找到它的K个最近邻(KNN),并记录为Ii,根据它们到pi的距离升序排序。其次,对于每个数据点pi,协方差矩阵由其KNN集Ii中的前K/2个数据点构成,如下所示:
在这里插入图片描述
其中Σ表示3×3协方差矩阵,pr表示Ii中前K/2数据点的平均向量。则标准特征值方程为:
在这里插入图片描述
可以使用奇异V值分解(SVD)来求解,其中V是特征向量(主成分,PCs)的矩阵,λ是特征值的矩阵。根据对应的特征值降序排列定义V中的特征向量v2、v1、v0,即λ2 > λ1 > λ0。前两个PC v2和v1形成正交基,这两个正交基表明了最大变异性的两个维度,定义了Ii中相邻点的最佳拟合平面,第三个PC v0与前两个PC正交,并近似于拟合平面的法线。
λ0估计点偏离切平面的程度,可以评价平面拟合的质量,λ0值越小,平面拟合的质量越好

内外点计算 MCMD算法

在这里插入图片描述
对于每个数据点,我们首先找到它的K个最近的邻居,通过主成分分析的方法通过前K/2个邻居计算它的特征向量,然后以特征向量v0为法向量,以特征值λ0为估计平面的平坦度。然后,利用最大一致性与最小距离(Maximum Consistency with Minimum Distance, MCMD)算法(Nurunnabi et al ., 2015)找到inliers和outliers,具体操作如下:首先,计算数据点pi到其估计平面的K个最近邻居的正交距离{dko}Kk=1,将其收集为集合NOD = {dko}Kk=1。那么,中位数绝对偏差(MAD)的计算如下:

其中中位数(NOD)是NOD的中位数,a = 1.4826为常数。内层,也称为一致性集(CS),是那些Rz得分为:小于恒定阈值2.5 (Nurunnabi等,2015)。
因此,对于每个数据点pi,我们得到它的法向n(pi),平坦度λ(pi)和一致集CS(pi)。

链接构建

链接构建:利用所有数据点的法线、平坦度和CSs,可以以非迭代的方式恢复成对的链接,具体操作如下。对于每一个数据点pi,我们在它的CS中搜索,找出平面度小于pi的邻居,并从中选择法线与pi的偏差最小的一个作为CN P (pi)。如果出口CN P (pi),两两之间的联系CN P(π)和π是创建并记录到一个查找表t .如果平坦λ(pi)在它附近π是最小的一个,λ(pi)小于阈值:thλ=λ+σλ,(8)我在哪里λ的平均值的平面度N数据点,σλ= qPN i = 1(λ(pi)−λ)2 / N是标准差的平面度,因此我们以π为集群中心,将其插入到列表Ccenter集群中心。
在这里插入图片描述

切片创建与融合

其中h0是Cp中数据点的最小子集的大小,平面拟合等于3,P是在所有It迭代中至少存在一个随机选择的h0最小子集无异常值的事件的概率,ǫ是Cp中的异常值率,一般情况下设置为50%。然后,在MCS方法的每次迭代中,执行以下步骤:(1)首先,随机选择h0个数据点。(2)对于h0-子集,通过PCA拟合平面,计算Cp中所有数据点的正交距离,并记录在NOD中。(3)然后对NOD进行升序排序,选取前h (h等于Cp大小的一半)个数据点组成h子集。(4)最后,在h子集上再次应用主成分分析法拟合一个平面,将其平坦度λ0加入到之前的平坦度列表中,定义为集合S(λ0)。迭代完成后,对S(λ0)进行升序排序,选择平面度最小的平面作为Cp的最佳拟合平面。
在这里插入图片描述

然后应用MCMD离群值去除方法,找出Cp中最拟合平面的内嵌层,即一致集(Consistent Set, CS)。因此,对于每个片Sp,我们用与每个数据点相同的方法获得其法向n(Sp)、平面度λ(Sp)和一致集CS(Sp)。

在这里插入图片描述
相邻与融合条件,唯一要确定的是边界θ

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值