前言:驶向未来的旅程
我们正处在一个交通出行方式发生革命性变革的时代。智能驾驶,或称自动驾驶技术,不仅仅是汽车产业的未来,更是重塑人类社会移动方式的强大引擎。本专题旨在成为您探索这一领域的全景式指南。我们将摒弃晦涩难懂的黑箱,以清晰的逻辑、详实的解读,带您走过智能驾驶车辆完成一次安全旅程的全过程:它如何“看”到世界,如何“想”清路径,又如何“控”制自身。无论您是汽车工程师、软件开发者、学生,还是对前沿科技充满好奇的爱好者,这本书都将为您提供一个坚实而深入的理解框架。
第一部分:基石篇——智能驾驶概览与基础
第1章:智能驾驶导论
1.1 什么是智能驾驶?定义与核心价值
1.2 发展简史:从达芬奇奇梦到现代竞赛
1.3 自动驾驶分级标准:SAE J3016详解(L0-L5)
1.4 智能驾驶系统的核心组成部分:感知、定位、决策、规划、控制
第2章:技术架构与电子电气架构
2.1 硬件架构:传感器套装、计算平台、车辆线控
2.2 软件架构:ROS2、AUTOSAR与中间件
2.3 数据流与信号流:信息如何在整个系统中传递
第二部分:感知篇——汽车的“眼睛”与“耳朵”
第3章:传感器技术深度解析
3.1 视觉感知:摄像头
原理:单目、双目、广角、长焦
核心任务:2D/3D物体检测、车道线识别、交通标志识别、可行驶区域分割
3.2 激光雷达
原理:TOF与FMCW
点云数据:特性、密度、反射强度
核心任务:3D障碍物检测、高精地图构建与定位
3.3 毫米波雷达
原理:多普勒效应与FMCW
核心优势:测速、全天候工作、穿透性强
核心任务:车辆、行人检测,特别是运动目标跟踪
3.4 超声波雷达与其他传感器
应用场景:短距离泊车
第4章:多传感器融合
4.1 为什么需要融合?——冗余与互补
4.2 融合层级:数据级、特征级、决策级
4.3 经典融合算法:卡尔曼滤波及其变种
4.4 前沿融合技术:基于深度学习的前融合方案
第5章:环境感知与理解
5.1 目标检测与跟踪:从YOLO到Transformer
5.2 语义分割:为每个像素赋予意义
5.3 场景理解:构建局部动态场景图
第三部分:定位与地图篇——“我在哪里?”与“路在何方?”
第6章:高精度定位技术
6.1 全球卫星导航系统及其增强系统
6.2 惯性导航系统:短时高精度定位的基石
6.3 融合定位:GNSS/IMU组合导航
6.4 基于激光雷达的点云匹配定位
6.5 基于视觉的里程计与重定位
第7章:高精地图与SLAM
7.1 高精地图:定义、图层结构与价值
7.2 即时定位与地图构建:在线构建未知环境
第四部分:决策规划篇——汽车的“大脑”
第8章:行为决策
8.1 任务:根据感知和预测结果,决定车辆的宏观行为
例如:跟车、换道、超车、让行、停车
8.2 基于规则的方法:有限状态机
8.3 基于预测的方法:考虑其他交通参与者的未来轨迹
8.4 基于强化学习的方法:让AI自我学习决策策略
第9章:运动规划
9.1 任务:将决策转化为一条安全、舒适、可执行的路径
9.2 路径搜索算法:A、D
9.3 采样-based算法:RRT、RRT*
9.4 曲线生成:多项式曲线、贝塞尔曲线、样条曲线
9.5 优化-based方法:将规划问题转化为带约束的优化问题
目标函数:舒适度、效率、安全性
约束:车辆动力学、交通规则、障碍物
第五部分:控制篇——汽车的“手脚”
第10章:车辆横向与纵向控制
10.1 车辆动力学模型简介
10.2 纵向控制:PID控制与模型预测控制在速度控制中的应用
10.3 横向控制:
纯追踪算法
斯坦利法则
基于模型预测控制的路径跟踪
第六部分:集成与未来篇
第11章:系统集成、测试与验证
11.1 V模型开发流程
11.2 仿真测试:软件在环、硬件在环、车辆在环
11.3 实车道路测试与数据闭环
11.4 安全标准与法规:SOTIF、ISO 26262
第12章:挑战与未来展望
3万+

被折叠的 条评论
为什么被折叠?



