Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

本文介绍了将卷积神经网络应用于图数据的一种方法,重点是学习局部化的谱过滤器和高效的图池化策略。通过k阶近似与ChebNet,实现了计算复杂度与图边数成正比的图卷积,同时利用Graclus多级聚类进行图粗化,构建二叉树实现快速pooling,降低了计算成本。
摘要由CSDN通过智能技术生成

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

1、主要贡献

  • 1、谱方法的卷积公式。一种基于谱方法的CNN的形式化表述,基于GSP

  • 2、严格的局部化的filters。局部化就是定义了一个参数K,K代表以一个节点为中心的K次跳跃(也就是距离为K)。

  • 3、小的计算复杂度。复杂度是和K以及边数成正比。因为大部分现实生活中的图是高度稀疏的,那么就是边数远远低于点数的平方,即 边 = k*点数。k可以看做是一个点的k最近邻。这也就是说复杂度是和输入数据的大小。另外,这个方法避免计算傅里叶因子(需要计算和储存傅里叶因子)。这个方法只用储存一个拉普拉斯矩阵,这是一个稀疏矩阵,只有边数个非零值。

  • 4、高效的pooling。通过构建一个二叉树进行pooling。

2、算法介绍

实现图上的CNN需要满足一下一点要求:

  • (1)设计卷积核
  • (2)相似点聚集
  • (3)pooling操作

2.1 学习局部化谱filters

k阶近似与ChebNet

切比雪夫多项式及其应用
http://www.docin.com/p-524643989.html
http://bookshelf.docin.com/p-1702466525.html
https://www.ixueshu.com/document/2c40f2ae055f2240318947a18e7f9386.html
https://wenku.baidu.com/view/c9566591f56527d3240c844769eae009591ba2ce.html
https://wenku.baidu.com/view/544dab7502768e9951e73842.html
ChebNet的作者指出原始的频谱图卷积有两大缺点:
图卷积核是全局的且参数量大 (卷积核大小与输入信号相同,参数量与图节点数相同)
图卷积运算的复杂度高 (运算过程涉及高计算复杂度的特征分解)

首先,为了克服卷积核过“大”的缺点,ChebNet指出可以使用多项式展开近似计算图卷积,即对参数化的频率响应函数进行多项式近似:
在这里插入图片描述
其中k代表多项式的最高阶数,这一步近似将卷积核的参数数量从n个减少到了 k k k个,使卷积核变“小”了,变得“局部”了。但是整个图卷积运算的复杂度还是 O ( n 2 ) O(n^2) O(n2),因为输入信号要与傅里叶基 U U U做矩阵乘法。为了进一步降低计算复杂度,作者使用迭代定义的切比雪夫多项式( C h e b S h e v   P o l y n o m i a l ChebShev\ Polynomial ChebShev Polynomial)作近似并证明可以将计算复杂度降低至 O ( K ∣ E ∣ ) O(K|E|) O(KE),其中 K K K为多项式的阶数, E E E为图中边的数量。作者将基于切比雪夫多项式定义的卷积核称为切比雪夫卷积核,对应的卷积运算则称为切比雪夫卷积,他们的公式定义如下:
在这里插入图片描述
式中的 λ m a x \lambda_{max} λmax​​表示拉普拉斯矩阵的最大特征值,添加’是为了表明这是近似的参数。从替换和化简后的卷积运算式可以发现,切比雪夫多项式矩阵的运算是固定,可以在预处理阶段完成,且拉普拉斯矩阵一般是稀疏的,可以使用稀疏张量乘法加速,因此整个图卷积的计算复杂度大大降低。除了定义切比雪夫图卷积外,ChebNet的作者还提出了图池化层.
推导:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
幂迭代法求特征值和特征向量
在这里插入图片描述
在这里插入图片描述
学习过滤器:通过梯度下降即可完成:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
应用举例
在这里插入图片描述
在这里插入图片描述
根据切比雪夫多项式进行求解
在这里插入图片描述
在这里插入图片描述

2.2 图池化

图粗化

传统图池化方法:谱聚类
本文使用方法:Graclus多级聚类算法
Weighted graph cuts without eigenvectors a multilevel approach

另外:
Algebraic multigrid techniques on graphs and the Kron reduction are two methods worth exploring in future works

快速pooling

通过上述方法得到更粗糙的图,然后对节点重排序,然后构建一个二叉树。
在这里插入图片描述
每级粗化我们可以得到一个粗化图 ( G 0 , G 1 , G 2 , G 3 , G 4 ) (G_0,G_1,G_2,G_3,G_4) G0,G1,G2,G3,G4,将该粗化图添加上一些辅助节点(上图右部分上,蓝色圆),使粗化图中每个顶点都有 2 2 2个孩子,从而构成一个二叉树,将二叉树摊平构成一维信号(上图右部分下),然后对该信号采样即可表示为一次图 p o o l i n g pooling pooling

  • 让我们对生活在 G 0 G_0 G0上的信号 x ∈ R 8 x∈R^8 xR8进行最大大小为 4 4 4的最大池化(或两个大小为 2 2 2的池化),最细图作为输入给出。 请注意,它最初拥有 n 0 = ∣ V 0 ∣ = 8 n_0 = | V_0 | = 8 n0=V0=8个顶点,任意排序。
  • 对于大小为 4 4 4的池,需要对大小 2 2 2进行两次粗化:让 G r a c l u s Graclus Graclus给出大小为 n 1 = ∣ V 1 ∣ n_1 = | V_1 | n1=V1 G 1 = 5 G1=5 G1=5 G 2 G_2 G2的大小为 n 2 = ∣ V 2 ∣ = 3 n_2 = | V_2 | = 3 n2=V2=3,最粗糙的图。
  • 因此,将大小设置为 n 2 = 3 , n 1 = 6 , n 0 = 12 n_2 = 3,n_1 = 6,n_0 = 12 n2=3n1=6n0=12,并将假节点(蓝色)添加到 V 1 V_1 V1 1 1 1个节点)和 V 0 V_0 V0 4 4 4个节点)以与正弦(橙色)配对,以便每个节点具有 正好有两个孩子
  • V 2 V_2 V2中的节点进行任意排序,并因此对 V 1 V_1 V1 V 0 V_0 V0中的节点进行排序。 此时, V 0 V_0 V0中的顶点排列允许在 x ∈ R 12 x∈R^{12} xR12上进行规则的 1 D 1D 1D合并,使得 z = [ m a x ( x 0 , x 1 ) , m a x ( x 4 , x 5 , x 6 ) , m a x ( x 8 , x 9 , x 1 0 ) ] ∈ R 3 z = [max(x_0,x_1),max(x_4,x_5,x_6),max(x_8,x_9,x_10)]∈R^3 z=[maxx0
  • 3
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这句话的意思是,使用快速局部谱滤波在图上进行卷积神经网络。在这个过程中,图像被表示为一个图,节点表示像素,边表示它们之间的关系。然后使用谱滤波器来处理这些图像,以便更好地捕捉它们之间的关系。由于使用了快速局部谱滤波器,因此可以有效地减少计算量,并提高计算效率。 ### 回答2: 卷积神经网络(CNN)在计算机视觉领域中被广泛应用,而针对图像上的卷积运算也得到了很好的改进。但是,对于图结构数据,卷积操作却变得更加困难。近年来出现了一些新的关于卷积神经网络用于图结构数据的方法,如基于图卷积网络(GCN)等。本文要介绍的“convolutional neural networks on graphs with fast localized spectral filtering”,即基于图谱的局部快速滤波的卷积神经网络,是另一种针对图结构数据的卷积方法。 传统的CNN通常采用局部的、线性的滤波器来提取图像的空间特征。而对于图结构数据,由于图上两个节点之间的关系是任意的,以及节点的特征不一定是有序的,因此无法直接地应用局部的卷积操作。但是,与图结构数据相对应的,是一个特殊的函数——图谱,它提供了丰富的图结构信息。 图谱(即拉普拉斯矩阵)是一个对称的稀疏矩阵,反映了图结构和节点特征之间的关系。将图谱的特征值和特征向量作为滤波器,就可以将图上的卷积操作转化为图谱卷积的形式。尤其是,利用局部滤波器就可以实现对图上节点嵌入向量的快速计算。 该方法涉及到了图谱嵌入、拉普拉斯矩阵、小批量图谱卷积核的设计等方面的内容。其中,图谱嵌入是将图结构数据映射为一个低维向量表示的过程,具有降维和特征抽取的作用;拉普拉斯矩阵是反应了图结构的一类矩阵,与图谱嵌入有密切关系;在卷积核设计方面,考虑到图结构的多样性和规模,将设计小批量卷积核进行快速的局部卷积操作,以提高计算效率。 该方法的优点在于,可以处理任意结构的图像和非图像数据,并且具有较好的鲁棒性和泛化能力。是否可以进一步提高计算效率,仍需更多的研究来探索。 ### 回答3: 卷积神经网络是一种基于多层神经元的深度学习算法,被用于图像、文本和声音等领域。最近,学者们开始研究如何将卷积神经网络应用于图形数据,如社交网络、交通网络和化学分子。其中,卷积神经网络特别适合处理图形数据,因为它可以学习局部特征,并保持局部空间关系。因此,卷积神经网络在图形任务上取得了许多优秀成果。 然而,之前的卷积神经网络模型存在一些不足,比如缺乏设计可解释性、效率低下、过度拟合等。为了解决这些问题,一种新的基于谱滤波的图形卷积神经网络被提出,即convolutional neural networks on graphs with fast localized spectral filtering。 这种方法在卷积层引入了局部谱滤波器,能够提高模型的效率和可解释性。谱滤波器可以学习图形数据的空间结构特征,能够捕捉节点之间的相邻关系和密度。而局部谱滤波器则针对每个节点的邻居子图进行滤波,使模型能够更好地识别图形数据中的局部特征。 此外,该方法还能够解决过拟合问题。过拟合是神经网络经常遇到的问题,即模型在训练集上表现极佳,但在测试集上表现不佳。谱滤波器可以在输入数据中学习的特征不够显著时,利用图形数据的全局谱信息进行补充,并减少过拟合的发生。 总之,convolutional neural networks on graphs with fast localized spectral filtering是一种高效、可解释、稳定的图形卷积神经网络。此方法在实际应用中有很大的潜力,如社交网络分析、城市交通预测、生物学和化学分子分析等领域。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值