Dual Graph Convolutional Networks for Graph-Based Semi-Supervised Classification

Introduction

这篇文章的主要思想,是基于半监督学习的两个基本假设

  • (1)局部一致性:距离比较近的数据,通常有相同的标签;
  • (2)全局一致性:处在相似的上下文中的数据,通常有相同的标签。如下图所示,该图卷积网络包括两个通路, C o n v A ConvA ConvA嵌入了半监督分类局部一致性的信息,是一个传统的图卷积过程; C o n v P ConvP ConvP 嵌入了半监督分类全局一致性的信息,是作者的一个创新点。在两个通路后,作者设计了一个新的 L o s s Loss Loss 函数,可以将局部一致性和全局一致性完美结合,取得一个好的实验效果。
  • 在这里插入图片描述

Local Consistency Convolution: C o n v A ConvA ConvA

c o n v A convA convA 的计算公式如下:
在这里插入图片描述

  • A ~ = A + I N \tilde{A} = A + I_N A~=A+IN 是无向图 G G G的自环邻接矩阵。
  • I N I_N IN是单位矩阵。
  • D ~ i i = ∑ j A ~ i j \tilde{D}_{ii} = \sum_j \tilde{A}_{ij} D
  • 5
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
graph convolutional networks (GCNs)是一种用于半监督分类的图卷积网络。GCNs适用于处理图数据,其中图由节点和节点之间的连接边组成。半监督分类是指在一些标记有类别的节点样本的基础上,对未标记的节点进行分类。以下是关于GCNs在半监督分类中的代码解释: GCNs的代码通常包含以下主要部分: 1. 数据准备:首先,我们需要准备图数据。这包括节点特征矩阵和图的邻接矩阵。节点特征矩阵是一个二维矩阵,每一行对应一个节点的特征向量。邻接矩阵描述节点之间的连接关系。 2. 定义模型:接下来,我们定义GCNs的模型结构。这包括定义卷积层、池化层和分类层等。卷积层用于在图上学习节点的特征表达,池化层用于减少节点的数量,分类层用于进行节点分类。 3. 前向传播:在GCNs中,前向传播的过程是通过迭代卷积层来逐步改进节点特征。我们可以通过相邻节点的特征加权平均来更新每个节点的特征。这个过程被称为图卷积。 4. 反向传播与优化:在前向传播后,我们计算模型预测结果与真实标签之间的损失。然后,使用反向传播算法计算梯度,并通过优化算法(例如随机梯度下降)更新模型的参数,以最小化损失。 5. 训练和评估:使用带有已标记节点标签的图数据集进行模型的训练。训练的目标是使模型能够准确预测未标记节点的类别。评估阶段,我们在测试集上评估模型的性能,通常使用准确率等指标来度量分类结果的质量。 总的来说,GCNs的代码实现主要涉及图数据的准备、模型定义、前向传播、反向传播与优化以及训练和评估等步骤。通过这些步骤,我们可以使用GCNs对图数据进行半监督分类任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值