Graph Representation Learning学习笔记-chapter4

Chapter4 Multi-relational Data and Knowledge Graphs

this chapter : multi-relational graphs’ node embeddings

多关系图的表示方式

  • 三元组 e = (u, T, v)
    • u, v : 不同的节点
    • T : uv节点的关系

4.1 Reconstructing multi-relational data

目标:给定两个节点的嵌入 z u z_u zu z v z_v zv, 重构这些节点的relationship.

decoder (与chapter3不同,加入了节点关系来预测边的存在)

  • input:a pair of node embedding + a relation type
  • output : the likelihood that the edge (u, T, v) exist in the graph

4.2 Loss functions

简单地重构loss的缺点(equation)

  • 计算复杂度很高
  • mean-squared error in Equation (均方误差)
    • 不适合二进制比较(goal:从低维嵌入decode邻接张量)
    • 适合回归不适合分类任务

mean-squared error 不理解

Cross-entropy loss with negative sampling

负采样的交叉熵损失

请添加图片描述

请添加图片描述

  • 表示edge存在的log-likelihood

请添加图片描述

  • 表示edge不存在的log-likelihood

Max-margin loss

请添加图片描述

  • 如果正样本的分数比负样本大,则loss小
  • 如果所有样本的分数差至少有∆这么大,则loss=0
  • ∆ : margin

4.3 Multi-relational decoders

请添加图片描述

RESCAL decoder

请添加图片描述

缺点:表示关系时有很高的计算和统计消耗

  • R是d*d的矩阵,所以有 O ( d 2 ) O(d^2) O(d2)个参数来表示边

Translational decoders

降低参数量的方法:TransE

请添加图片描述

  • 降到了d个参数
  • 边存在的可能性和头尾节点的嵌入距离成正比
  • 缺点:太简陋

对TransE的拓展:TransX

请添加图片描述

DistMult

请添加图片描述

  • 不基于translate嵌入,而是通过从简单图中归纳出dot product decoder
  • 缺点:只能encode对称关系,但很多关系图中的边是有向的、非对称的

Complex decoders

请添加图片描述

  • 通过对终止节点(尾节点)进行复共轭(complex conjugate),解决了DistMult的缺点,适用于非对称关系

RotatE

请添加图片描述

  • 将decoder定义为rotations in the complex plane(复平面上的旋转)

检测decoder表达能力的方法

检测decoder是否能represent边的不同逻辑模式,如对称,反对称,反演和传递

Symmetry:(u,T,v)存在,则(v,T,u)存在
anti-Synmmetry:(u,T,v)存在,则(v,T,u)不存在
Inversion:(u,T1,v)存在,则(v,T2,u)存在 (相比对称,关系T不同)
Compositionality:(u,T1,y)存在,(y,T2,v)存在,则(v,T3,u)存在

请添加图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 图表示学习是一种机器学习技术,旨在将图形数据转换为低维向量表示,以便于计算机进行处理和分析。这种技术可以应用于各种领域,如社交网络分析、生物信息学、推荐系统等。通过图表示学习,可以更好地理解和分析图形数据,从而提高数据处理和应用的效率。 ### 回答2: 图表示学习是一种机器学习的方法,用于学习和提取图结构中的有用信息和特征。图表示学习的目标是将图中的节点和边转化为向量表达,从而实现对图结构的分析和预测。 图表示学习可以应用于各种各样的领域,如社交网络分析、生物信息学、推荐系统等。通过学习图中节点的向量表达,我们可以对节点进行聚类、分类、推荐等任务。同时,图表示学习还可以揭示图结构中的隐藏关系和模式,帮助我们理解和挖掘图中的信息。 图表示学习有多种方法和技术。其中一种常用的方法是基于图的随机游走。通过模拟随机游走的过程,我们可以收集节点的邻居信息,并根据节点的邻居关系来学习节点的向量表达。还有一种常用的方法是基于图的图卷积网络。这种方法利用图结构的局部连接性来学习节点的向量表达,通过多层图卷积网络可以逐步提取节点的更高级别的特征。 图表示学习在图挖掘和数据分析领域具有广泛的应用和研究价值。它可以帮助我们理解和解释复杂的图结构,从而更好地处理和分析图数据。同时,图表示学习还能够应对大规模和高维度的图数据,提高计算效率和准确性。未来,我们可以进一步研究和发展图表示学习的方法和技术,以应对图数据分析的挑战。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值