Pytorch之训练的完整过程(最终篇)

先引入库(事实上是在构建时引入的)note9_train.py

import torchvision
from torch.utils.tensorboard import SummaryWriter

from note9_LeNet import *
from torch import nn
from torch.utils.data import DataLoader

其中note9_LeNet中存放的是之前的模型文件,大多数情况也这么引入
note9_LeNet.py

import torch
from torch import nn

# 搭建神经网络
class Module(nn.Module):
    def __init__(self):
        super(Module, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 16, 5),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(16, 32, 5),
            nn.MaxPool2d(2, 2),
            nn.Flatten(),  # 注意一下,线性层需要进行展平处理
            nn.Linear(32*5*5, 120),
            nn.Linear(120, 84),
            nn.Linear(84, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

然后回到note9_train.py加载数据集,还是拿CIFAR10开刀

train_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=True, transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=False, transform=torchvision.transforms.ToTensor(),download=True)

然后存放到dataloader

# DataLoader 加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

然后设置模型和参数

# 创建网络模型
module = Module()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(module.parameters(), lr=learning_rate)
# 训练的轮数
epoch = 12
# 储存路径
work_dir = './LeNet'
# 添加tensorboard
writer = SummaryWriter("{}/logs".format(work_dir))

然后开始训练
两层循环,一层是epoch训练批数,另一层迭代dataloader

for i in range(epoch):
    print("-------epoch  {} -------".format(i+1))
    # 训练步骤
    module.train()
    for step, [imgs, targets] in enumerate(train_dataloader): 
        outputs = module(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        train_step = len(train_dataloader)*i+step+1
        if train_step % 100 == 0:
            print("train time:{}, Loss: {}".format(train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), train_step)

    # 测试步骤
    module.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for imgs, targets in test_dataloader: 
            outputs = module(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("test set Loss: {}".format(total_test_loss))
    print("test set accuracy: {}".format(total_accuracy/len(test_data)))
    writer.add_scalar("test_loss", total_test_loss, i)
    writer.add_scalar("test_accuracy", total_accuracy/len(test_data), i)

    torch.save(module, "{}/module_{}.pth".format(work_dir,i+1))
    print("saved epoch {}".format(i+1))

writer.close()

然后加上GPU,分别需要在module、loss、img、traget上,也就是tensor上使用cuda(),修改部分

# 创建网络模型
module = Module()
if torch.cuda.is_available():
    module = module.cuda()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()

以及dataloader取出数据后

if torch.cuda.is_available():
    imgs = imgs.cuda()
    targets = targets.cuda()

然后下面是note9_train.py的全部代码

import torchvision
from torch.utils.tensorboard import SummaryWriter

from note9_LeNet import * #网络模型文件
from torch import nn
from torch.utils.data import DataLoader

train_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=True, transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=False, transform=torchvision.transforms.ToTensor(),download=True)

# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)


# 创建网络模型
module = Module()
if torch.cuda.is_available():
    module = module.cuda()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()
# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(module.parameters(), lr=learning_rate)
# 训练的轮数
epoch = 12
# 储存路径
work_dir = './LeNet'
# 添加tensorboard
writer = SummaryWriter("{}/logs".format(work_dir))

for i in range(epoch):
    print("-------epoch  {} -------".format(i+1))
    # 训练步骤
    module.train()
    for step, [imgs, targets] in enumerate(train_dataloader):
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            targets = targets.cuda()
        outputs = module(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        train_step = len(train_dataloader)*i+step+1
        if train_step % 100 == 0:
            print("train time:{}, Loss: {}".format(train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), train_step)

    # 测试步骤
    module.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for imgs, targets in test_dataloader:
            if torch.cuda.is_available():
                imgs = imgs.cuda()
                targets = targets.cuda()
            outputs = module(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum() #argmax(1)表示把outputs矩阵中的最大值输出
            total_accuracy = total_accuracy + accuracy

    print("test set Loss: {}".format(total_test_loss))
    print("test set accuracy: {}".format(total_accuracy/len(test_data)))
    writer.add_scalar("test_loss", total_test_loss, i)
    writer.add_scalar("test_accuracy", total_accuracy/len(test_data), i)

    torch.save(module, "{}/module_{}.pth".format(work_dir,i+1))
    print("saved epoch {}".format(i+1))

writer.close()

正式训练开始后

运行tensorboard –logdir=LeNet/logs

补:cuda也可以先设置设备

# 定义训练设备
device = torch.device("cuda:0")

然后使用to()方法给tensor调用cuda

module = module.to(device) 
loss_fn = loss_fn.to(device) 
imgs = imgs.to(device)
targets = targets.to(device) 

有关测试部分

import torch
import torchvision
from PIL import Image
from torch import nn
from note9_LeNet import *

image_path = "./dataset/cat_vs_dog/val/cat/cat.10000.jpg"
image = Image.open(image_path)
print(image)
image = image.convert('RGB')
transform = torchvision.transforms.Compose([
    torchvision.transforms.Resize((32, 32)),
    torchvision.transforms.ToTensor()
])
image = transform(image)
print(image.shape)

model = torch.load("LeNet/module_12.pth", map_location=torch.device('cpu'))
print(model)
image = torch.reshape(image, (1, 3, 32, 32))
model.eval()
with torch.no_grad():
    output = model(image)
print(output)

print(output.argmax(1))

  • 23
    点赞
  • 98
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: PyTorch训练模型的必要过程包括数据准备、建立模型、设置超参数、训练模型和评估模型。数据准备阶段可以涉及数据清洗、数据增强等;建立模型阶段可以涉及选择优化器、损失函数等;设置超参数阶段可以涉及学习率、梯度裁剪等;训练模型阶段可以涉及模型训练、模型验证等;最后,评估模型阶段可以涉及模型的推理、模型的对抗性测试等。 ### 回答2: PyTorch是一种当今流行的深度学习框架,用于训练模型以解决各种机器学习问题。PyTorch训练模型的必要过程包括以下几个步骤: 1. 数据准备:首先,我们需要准备训练模型所需的数据。这可能包括数据集的预处理、数据集的划分(训练集、验证集和测试集)、数据的加载和转换等。 2. 构建模型:接下来,我们要构建一个用于训练的模型。PyTorch提供了丰富的模型定义和组合的工具,可以根据问题的特点选择合适的网络结构、层数和参数。 3. 定义损失函数:在训练模型之前,我们需要定义一个用于衡量模型预测与真实值之间的差异的损失函数。损失函数通常是根据问题的类型选择的,例如均方差误差、交叉熵等。 4. 定义优化器:接下来,我们需要选择一个适当的优化算法来更新模型的参数以最小化损失函数。PyTorch提供了多种优化器,如SGD、Adam等,可以根据需求选择合适的优化器。 5. 训练模型:现在,我们可以开始训练模型了。训练模型的过程通常涉及多个迭代周期(epoch),每个迭代周期包括以下步骤:前向传播(将输入数据通过网络计算出预测结果)、计算损失、反向传播(通过计算梯度更新参数)和优化器更新参数。 6. 模型评估:在训练过程中,我们需要对模型进行评估以了解其性能。可以使用验证集或测试集来评估模型的准确性、精确度、召回率等指标。 7. 调参和优化:根据模型评估的结果,我们可以对模型进行调整和优化,例如调整超参数、增加/减少层数、改变模型结构等。 8. 预测和应用:一旦模型训练和优化完成,我们可以使用该模型进行预测和应用。可以使用训练好的模型来对新数据进行预测、进行分类、生成图像等。 总而言之,PyTorch训练模型的必要过程包括数据准备、构建模型、定义损失函数和优化器、训练模型、模型评估、调参和优化、预测和应用等步骤。这些步骤的顺序和具体实现可能根据问题的不同而有所变化。 ### 回答3: PyTorch是一个基于Python的开源机器学习库,广泛用于深度学习任务。在PyTorch中,训练模型的必要过程包括数据准备、模型构建、模型训练和模型评估。 首先,数据准备是模型训练的第一步。这包括输入数据的预处理、拆分为训练集和测试集,以及将其转换为PyTorch中的可用格式(如张量)。数据准备的目标是让模型能够理解和学习输入数据。 接下来,模型构建是指根据任务的需求创建深度学习模型的过程PyTorch提供了丰富的类和函数(如torch.nn模块)来构建各种类型的模型,例如卷积神经网络(CNN)、循环神经网络(RNN)等。模型构建的重点是选择适当的网络结构、设置模型的参数和超参数等。 然后,模型训练是通过优化算法来调整模型参数以最小化损失函数的过程。损失函数衡量了模型的预测结果与真实标签之间的差异。PyTorch提供了各种优化器(如SGD、Adam)和损失函数(如交叉熵损失)来帮助实现模型训练过程训练过程中,通过反向传播算法计算梯度并更新模型的参数,使模型能够逐渐优化和提升性能。 最后,模型评估是在训练过程结束后对模型性能进行评估的过程。通过使用测试数据集,对模型进行预测并计算其准确率、精确率、召回率等评估指标。通过评估结果,可以判断模型是否满足预期的性能要求。 综上所述,PyTorch训练模型的必要过程包括数据准备、模型构建、模型训练和模型评估。通过依次完成这些步骤,可以有效地训练、优化和评估深度学习模型,从而实现各种任务的目标。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MrRoose

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值