概率论与数理统计2->随机变量及其分布

第一节 随机变量的概念

设 Ω 是 随 机 试 验 E 的 样 本 空 间 , 若 ∀ ω ∈ Ω , 有 唯 一 的 实 数 值 X ( w ) 与 之 对 应 , 则 称 X ( w ) 为 随 机 变 量 , 简 记 为 X . 设\Omega是随机试验E的样本空间,若\forall\omega\in\Omega,有唯一的实数值X(w)与之对应,则称X(w)为随机变量,简记为X. ΩE,ωΩ,X(w),X(w),X.

第二节 离散型随机变量及其概率分布

离散型随机变量

我们称可能取值是有限个或可列无穷多个的随机变量为离散型随机变量.

离散型随机变量的概率分布或分布律

设 离 散 型 随 机 变 量 X 所 有 可 能 取 值 为 : x 1 , x 2 , ⋯   , x k , ⋯   , X 取 各 个 可 能 值 的 概 率 为 P { X = x k } = p k , k = 1 , 2 , ⋯ 设离散型随机变量X所有可能取值为:x_1,x_2,\cdots,x_k,\cdots,\\ X取各个可能值的概率为P\{X=x_k\}=p_k,k=1,2,\cdots X:x1,x2,,xk,,XP{ X=xk}=pk,k=1,2,
则称①式为离散型随机变量X的概率分布或分布律.
分布律也可以写成
( x 1 x 2 ⋯ x n ⋯ p 1 p 2 ⋯ p n ⋯ ) \begin{pmatrix} x_1 & x_2 & \cdots & x_n & \cdots\\ p_1 & p_2 & \cdots & p_n & \cdots\\ \end{pmatrix} (x1p1x2p2xnpn)
或者
X ∣ x 1 x 2 ⋯ x n ⋯ P ∣ p 1 p 2 ⋯ p n ⋯ \begin{matrix} X |x_1 & x_2 & \cdots & x_n & \cdots\\ \hline P|p_1 & p_2 & \cdots & p_n & \cdots\\ \end{matrix} Xx1Pp1x2p2xnpn
由概率的定义易知,离散型随机变量X的分布律应满足:
( 1 ) P { X = x k } = p k ≥ 0 , k = 1 , 2 ⋯ (1)P\{X=x_k\}=p_k\geq0,k=1,2\cdots (1)P{ X=xk}=pk0,k=1,2
( 2 ) ∑ k = 1 ∞ P { X = x k } = ∑ k = 1 ∞ p k = 1 (2)\sum\limits_{k=1}^{\infty}P\{X=x_k\} = \sum\limits_{k=1}^{\infty}p_k = 1 (2)k=1P{ X=xk}=k=1pk=1

离散型随机变量的常见分布(分布律,记号)

1.两点分布(0-1分布)

若随机变量X只有0,1两种取值,则它的分布律为
X ∣ 0 1 P ∣ 1 − p p \begin{matrix} X| &0 & 1\\ \hline P| &1-p &p\\ \end{matrix} XP01p1p或者 P { X = k } = p k ( 1 − p ) 1 − k ( k = 0 , 1 , 0 < p < 1 ) P\{X=k\} =p^k (1-p)^{1-k}(k=0,1,0<p<1) P{ X=k}=pk(1p)1k(k=0,1,0<p<1)
则称X服从两点分布或0-1分布,记为X~B(1,p)

2.二项分布

在n重伯努利试验中,设X为事件A发生的次数,则X可能取的值为0,1, ⋯ \cdots ,n它取这些值的概率为
P { X = k } = C n k p k ( 1 − p ) n − k , k = 0 , 1 , ⋯   , n P\{X=k\} =\mathrm{C}_n^k p^k (1-p)^{n-k}, k=0,1,\cdots,n P{ X=k}=Cnkpk(1p)nk,k=0,1,,n
由二项式定理
∑ k = 0 n P { X = k } = ∑ k = 0 n C n k p k ( 1 − p ) n − k = [ p + ( 1 − p ) ] n = 1 \sum\limits_{k=0}^{n}P\{X=k\} =\sum\limits_{k=0}^{n}\mathrm{C}_n^kp^k (1-p)^{n-k}=[p+(1-p)]^n=1 k=0nP{ X=k}=k=0nCnkpk(1p)nk=[p+(1p)]n=1
若随机变量的分布律为
P { X = k } = C n k p k ( 1 − p ) n − k ( k = 0 , 1 , ⋯   , n , 0 < p < 1 ) , P\{X=k\} =\mathrm{C}_n^k p^k (1-p)^{n-k}(k=0,1,\cdots,n,0<p<1), P{ X=k}=Cnkpk(1p)nk(k=0,1,,n,0<p<1),
则称X服从二项分布,记为X~B(n,p)
在n重伯努利试验中,事件A发生的次数X是服从二项分布的.设随机变量X~B(n,p),若P{X=k}在X=m处取得最大值,则称P{X=m}为二项分布的中心项,m称为最可能成功次数,对于给定的n及p,可以证明m=[(n+1)p].若(n+1)p为正整数,则m=(n+1)p及m=(n+1)p-1均为最可能成功次数.

3.泊松分布

泊松定理

设 若 随 机 变 量 X n 服 从 二 项 分 布 , 分 布 律 为 P { X = k } = C n k p k ( 1 − p ) n − k ( k = 0 , 1 , ⋯   , n , 0 < p < 1 ) 设若随机变量X_n服从二项分布,分布律为P\{X=k\} =\mathrm{C}_n^kp^k (1-p)^{n-k}(k=0,1,\cdots,n,0<p<1) Xn,P{ X=k}=Cnkpk(1p)nk(k=0,1,,n,0<p<1)
设 λ 是 一 常 数 , lim ⁡ n → ∞ n p n = λ , 则 对 固 定 的 k 有 设\lambda是一常数,\lim\limits_{n \to \infty}np_n=λ,则对固定的k有 λ,nlim

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值