习题自测
根轨迹基本概念
判断题
1.根轨迹是特征方程
1
+
K
G
(
s
)
=
0
1+\mathrm{KG}(s)=0
1+KG(s)=0 的根,随着
K
\mathrm{K}
K 从 0 变化到
+
∞
+\infty
+∞ 时的运动轨迹。
2.根轨迹的条数是系统的极点个数。
3.根轨迹取决于特征方程给出的幅值条件。
4.根轨迹上的一点s,是增益K取得幅值条件决定的匹配值时的极点。
5.我们能够从根轨迹中读出控制系统性能的诸多信息。
√√×√√
根轨迹的绘制方法
判断题
1.根轨迹的条数是系统的零点个数。
2.根轨迹起始于开环极点,终止于开环零点。
3.实轴上点s的右侧有奇数个开环零极点,则它位于根轨迹之上。
4.根轨迹的多条渐进线相交于实轴上的渐进中心。
5.增益K作为根轨迹点s(实域)的函数,在分离点处取得极大值。
6.增益K作为根轨迹点s(实域)的函数,在汇合点处取得极大值。
7.增益K取根轨迹点与实轴交点的匹配值时,系统不稳定。
8.根轨迹在实轴上只能有0度或180度的出射角和入射角。
9.根轨迹复数起始点或终止点处, 有不确定的出射角和入射角。
×√√√√×√√×
计算题
单位负反馈系统的特征方程如下,试绘制其根轨迹草图。
1
+
K
s
(
s
+
1
)
(
s
+
2
)
=
0
1+\frac{K}{s(s+1)(s+2)}=0
1+s(s+1)(s+2)K=0
第一步,确定起始点和终止点。
起点 : 0,-1,-2 ;
终点
:
∞
,
∞
,
∞
: \infty, \infty, \infty
:∞,∞,∞
第二步,确定实轴上的根轨迹段。
(
−
10
)
,
(
−
∞
−
2
)
(-10),(-\infty-2)
(−10),(−∞−2)
第三步,确定分离点或会合点。
系统的开环传递函数为:
G
(
s
)
H
(
s
)
=
K
s
(
s
+
1
)
(
s
+
2
)
P
(
s
)
=
1
,
Q
(
s
)
=
s
(
s
+
1
)
(
s
+
2
)
d
K
d
s
=
−
P
(
s
)
Q
′
(
s
)
−
P
′
(
s
)
Q
(
s
)
P
2
(
s
)
=
3
s
2
+
6
s
+
2
=
0
\begin{aligned} &G(s) H(s)=\frac{K}{s(s+1)(s+2)} \\ &P(s)=1, Q(s)=s(s+1)(s+2) \\ &\frac{d K}{d s}=-\frac{P(s) Q^{\prime}(s)-P^{\prime}(s) Q(s)}{P^{2}(s)}=3 s^{2}+6 s+2=0 \end{aligned}
G(s)H(s)=s(s+1)(s+2)KP(s)=1,Q(s)=s(s+1)(s+2)dsdK=−P2(s)P(s)Q′(s)−P′(s)Q(s)=3s2+6s+2=0
求得:
s
1
=
−
1.58
,
s
2
=
−
0.42
s_{1}=-1.58, \quad s_{2}=-0.42
s1=−1.58,s2=−0.42
代入特征方程:
K
=
−
Q
(
s
)
P
(
s
)
=
−
s
(
s
+
1
)
(
s
+
2
)
K=-\frac{Q(s)}{P(s)}=-s(s+1)(s+2)
K=−P(s)Q(s)=−s(s+1)(s+2)
s
1
\mathrm{s}_{1}
s1 代
λ
,
K
=
−
0.384
<
0
,
\lambda, K=-0.384<0,
λ,K=−0.384<0, 故舍去
i
i
i
s
2
s_{2}
s2 代
λ
,
K
=
0.384
>
0
,
\lambda, K=0.384>0,
λ,K=0.384>0, 是分离点。
第四步,确定渐近线。
渐近线共有3条(n-m),渐近线的倾角:
ϕ
A
=
(
2
k
+
1
)
18
0
∘
n
−
m
,
k
=
0
,
1
,
2
,
⋯
,
n
−
m
−
1
\phi_{A}=\frac{(2 k+1) 180^{\circ}}{n-m}, k=0,1,2, \cdots, n-m-1
ϕA=n−m(2k+1)180∘,k=0,1,2,⋯,n−m−1
取
k
=
0
,
1
,
2
,
k=0,1,2,
k=0,1,2, 得到:
ϕ
A
1
=
6
0
∘
ϕ
A
2
=
18
0
∘
ϕ
A
3
=
30
0
∘
\phi_{A 1}=60^{\circ} \quad \phi_{A 2}=180^{\circ} \quad \phi_{A 3}=300^{\circ}
ϕA1=60∘ϕA2=180∘ϕA3=300∘
渐近线与实轴的交点 ( 渐进中心 ) :
σ
A
=
−
(
0
+
1
+
2
)
+
0
3
−
0
=
−
1
\sigma_{A}=-\frac{(0+1+2)+0}{3-0}=-1
σA=−3−0(0+1+2)+0=−1
第五步,确定根轨迹与虚轴交点。
特征方程:
s
3
+
3
s
2
+
2
s
+
K
=
0
s^{3}+3 s^{2}+2 s+K=0
s3+3s2+2s+K=0
令
s
=
j
ω
\quad s=j \omega
s=jω
−
j
ω
3
−
3
ω
2
+
2
j
ω
+
K
=
0
{
ω
3
=
2
ω
K
=
3
ω
2
⟶
{
ω
=
±
2
K
=
6
\begin{array}{r} -j \omega^{3}-3 \omega^{2}+2 j \omega+K=0 \\ \left\{\begin{array}{l} \omega^{3}=2 \omega \\ K=3 \omega^{2} \end{array} \quad \longrightarrow\left\{\begin{array}{l} \omega=\pm \sqrt{2} \\ K=6 \end{array}\right.\right. \end{array}
−jω3−3ω2+2jω+K=0{ω3=2ωK=3ω2⟶{ω=±2K=6
这个三阶系统可以被二阶系统代替,而且有可能失稳。
确定下面的系统的根轨迹的出射角。
G
(
s
)
H
(
s
)
=
K
(
s
+
2
)
s
2
+
2
s
+
3
G(s) H(s)=\frac{K(s+2)}{s^{2}+2 s+3}
G(s)H(s)=s2+2s+3K(s+2)
解:开环极点为
p
1
,
2
=
−
1
±
j
2
\quad p_{1,2}=-1 \pm j \sqrt{2}
p1,2=−1±j2
于是:
θ
p
1
=
5
5
∘
−
9
0
∘
±
18
0
∘
=
14
5
∘
\begin{aligned} \theta_{p 1} &=55^{\circ}-90^{\circ} \pm 180^{\circ} \\ &=145^{\circ} \end{aligned}
θp1=55∘−90∘±180∘=145∘
基于根轨迹的控制系统分析设计
判断题
1.调节K时,根轨迹能够提供系统极点位置以及性能变化的全貌。
2.比例控制器(调节)是最简便的控制器,它能同时改变根轨迹和极点配置。
3.附加开环极点(积分器),根轨迹将向右侧偏离,稳定性降低。
4.附加开环零点(微分器),根轨迹将向右侧偏离,稳定性降低。
5.与附加闭环极点(积分器)相反,附加开环极点减小等效阻尼的效应。
6.与附加闭环零点(微分器)相反,附加开环零点减小等效阻尼的效应。
7.附加开环极点(积分器),有利于提高系统的精度。
8.PID控制器兼顾比例、积分和微分调节特性,是最常用的控制器。
√×√×√×√√
根轨迹
根轨迹的基本概念
对于系统的动态参数变化,每变化一次增益,我们就要重新求解一次特征方程,非常地麻烦,非常地不爽,非常地不快乐,那么能不能避免这样的计算呢?可不可以不写特征方程也能对极点的变化有一个清晰的判断呢?根轨迹便是为解决这一问题而生的。为了不做老黄牛,在这一章里我们就要熟练掌握根轨迹图的绘制方法,并能利用根轨迹法设计控制器。
我们举例看看没有根轨迹会多么让人烦躁,已知单位负反馈系统的开环传递函数如下,
G
(
s
)
=
5
K
A
s
(
s
+
34.5
)
G(s)=\frac{5 K_{A}}{s(s+34.5)}
G(s)=s(s+34.5)5KA
Ka=200、1500和13.5时,试分别确定闭环极点 并分析系统性能。
ϕ ( s ) = G ( s ) 1 + G ( s ) = 5 K A s 2 + 34.5 s + 5 K A K A = 200 , ∴ ϕ ( s ) = 1000 s 2 + 34.5 s + 1000 ∴ ω n 2 = 1000 , 2 ξ ⋅ ω n = 34.5 ∴ ω n = 31.6 , ξ = 34.5 2 ω n = 0.545 t p = π ω n 1 − ξ 2 = 0.12 t s ≈ 3 ξ ⋅ ω n = 0.174 σ % = e − π ξ / 1 − ξ 2 × 100 % = 13 % N = t s 2 π / ω d = t s ω n 1 − ξ 2 2 π = 0.72 闭 环 极 点 为 : S 1 , 2 = − 17.25 ± j 26.5 \begin{aligned} &\phi(s)=\frac{G(s)}{1+G(s)}=\frac{5 K_{A}}{s^{2}+34.5 s+5 K_{A}}\\ &K_{A}=200, \therefore \phi(s)=\frac{1000}{s^{2}+34.5 s+1000}\\ &\therefore \omega_{n}^{2}=1000,2 \xi \cdot \omega_{n}=34.5\\ &\therefore \omega_{n}=31.6, \xi=\frac{34.5}{2 \omega_{n}}=0.545\\ &t_{p}=\frac{\pi}{\omega_{n} \sqrt{1-\xi^{2}}}=0.12\\ &t_{s} \approx \frac{3}{\xi \cdot \omega_{n}}=0.174\\ &\sigma \%=e^{-\pi \xi / \sqrt{1-\xi^{2}}} \times 100 \%=13 \%\\ &N=\frac{t_{s}}{2 \pi / \omega_{d}}=\frac{t_{s} \omega_{n} \sqrt{1-\xi^{2}}}{2 \pi}=0.72\\ &闭环极点为 : \quad S_{1,2}=-17.25 \pm j 26.5 \end{aligned} ϕ(s)=1+G(s)G(s)=s2+34.5s+5KA5KAKA=200,∴ϕ(s)=s2+34.5s+10001000∴ωn2=1000,2ξ⋅ωn=34.5∴ωn=31.6,ξ=2ωn34.5=0.545tp=ωn1−ξ2π=0.12ts≈ξ⋅ωn3=0.174σ%=e−πξ/1−ξ2×100%=13%N=2π/ωdts=2πtsωn1−ξ2=0.72闭环极点为:S1,2=−17.25±j26.5
考察
K
A
=
1500
K_{A}=1500
KA=1500
ω
n
=
86.2
;
ξ
=
0.2
\omega_{n}=86.2 ; \xi=0.2
ωn=86.2;ξ=0.2
此时有:
t
p
=
0.037
,
t
s
=
0.174
σ
0
/
o
=
52.7
%
\begin{array}{l} t_{p}=0.037, t_{s}=0.174 \\ \sigma^{0} / \mathrm{o}=52.7 \% \end{array}
tp=0.037,ts=0.174σ0/o=52.7%
闭环极点为
:
S
1
,
2
=
−
17.25
±
j
84.5
: S_{1,2}=-17.25 \pm j 84.5
:S1,2=−17.25±j84.5
调大
K
A
K_{A}
KA 后,极点位置垂直变化,
ξ
\xi
ξ 变小
,
ω
n
, \omega_{n}
,ωn 变大
;
t
p
; t_{p}
;tp 变小
,
σ
%
, \sigma \%
,σ% 变大
;
;
; 而
t
s
t_{s}
ts 保持不变。
考察
K
A
=
13.5
K_{A}=13.5
KA=13.5
ω
n
=
8.22
,
ξ
=
2.1
\omega_{n}=8.22, \xi=2.1
ωn=8.22,ξ=2.1
此时系统变成了过阻尼,过渡过程调节时间由较大的时间常数决定。(1/T1与1/T2仅中间符号不同)
1
T
1
=
w
n
(
ξ
−
ξ
2
−
1
)
t
s
≈
3
T
1
=
1.46
\begin{array}{l} \frac{1}{T_{1}}=w_{n}\left(\xi-\sqrt{\xi^{2}-1}\right) \\ t_{s} \approx 3 T_{1}=1.46 \end{array}
T11=wn(ξ−ξ2−1)ts≈3T1=1.46
闭环极点为
:
S
1
=
−
32.44
S
2
=
−
2.08
: \quad S_{1}=-32.44 \quad S_{2}=-2.08
:S1=−32.44S2=−2.08
1、调参数可以改变极点位置,进而改变系统性能。
2、兼顾稳、快、准,如何调参数 ?
比例控制是最典型的控制结构
上述案例考察了调节K时,极点位置、系统性能的变化,能否简便地获知K变化时,极点位置以及系统性能变化的全貌 ?
美国工程师W.R. Evans在1948年发表了《控制系统的图解分析》。
根轨迹 : 开环系统某一参数从 0 变到正无穷时,闭环系统的极点在s平面上变化的轨迹。
确定如下闭环系统的根轨迹。
解:
闭环传递函数:
T
(
s
)
=
K
s
2
+
s
+
K
\quad T(\mathrm{~s})=\frac{K}{\mathrm{~s}^{2}+\mathrm{~s}+K}
T( s)= s2+ s+KK
特征方程:
s
2
+
s
+
K
=
0
\quad \mathrm{s}^{2}+\mathrm{~s}+K=0
s2+ s+K=0
特征方程的根:
s
1
,
2
=
−
0.5
±
0.5
1
−
4
K
\quad \mathrm{s}_{1,2}=-0.5 \pm 0.5 \sqrt{1-4 K}
s1,2=−0.5±0.51−4K
考察
K
K
K 从零到无穷大变化时,极点的变化情况
s
1
,
2
=
−
0.5
±
0.5
1
−
4
K
\mathrm{s}_{1,2}=-0.5 \pm 0.5 \sqrt{1-4 K}
s1,2=−0.5±0.51−4K
1
,
K
=
0
\mathbf{1}, \boldsymbol{K}=\mathbf{0}
1,K=0 时
,
s
1
=
0
,
s
2
=
−
1
, \quad \mathrm{s}_{1}=0, \mathrm{~s}_{2}=-1
,s1=0, s2=−1
2、0
<
K
<
0.25
<K<0.25
<K<0.25 时,两个互异负实根
s
1
,
2
=
−
0.5
±
0.5
1
−
4
K
\mathrm{s}_{1,2}=-0.5 \pm 0.5 \sqrt{1-4 K}
s1,2=−0.5±0.51−4K
3、K=0.25 时
,
s
1
,
2
=
−
0.5
, \quad \mathrm{s}_{1,2}=-0.5
,s1,2=−0.5
4、0.25
<
K
<
∞
<K<\infty
<K<∞ 时
,
s
1
,
2
=
−
0.5
±
0.5
j
4
K
−
1
, \mathrm{s}_{1,2}=-0.5 \pm 0.5 j \sqrt{4 K-1}
,s1,2=−0.5±0.5j4K−1
根轨迹图 , 以系统根轨迹增益K为参变量 , 当K 由 0 → ∞ 0 \rightarrow \infty 0→∞ 时 , , , 系统闭环极点在 s s s 平面上变化的轨迹。
画图首先要会读图,已知极点变化全貌,如何解读性能 ?
四条根轨迹显然是四阶系统,K在实半轴越小越稳定,但是会有正实部的出现,无法保持一直稳定,最左边一条根轨迹在K逐渐增大的过程中越来越远离虚轴,时间常数越来越小,所以可以忽略,整个系统就可以简化为一个三阶系统。
根轨迹方程和约束条件
S平面上的点s在根轨迹上,必须满足闭环特征方程:
1
+
G
(
s
)
H
(
s
)
=
0
1+G(s) H(s)=0
1+G(s)H(s)=0
其中,开环传递函数为:
G
(
s
)
H
(
s
)
=
K
(
s
−
z
1
)
(
s
−
z
2
)
…
(
s
−
z
m
)
(
s
−
p
1
)
(
s
−
p
2
)
…
(
s
−
p
n
)
G(s) H(s)=\frac{K\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)}
G(s)H(s)=(s−p1)(s−p2)…(s−pn)K(s−z1)(s−z2)…(s−zm)
由特征方程得到:
G
(
s
)
H
(
s
)
=
K
∏
i
=
1
m
(
s
−
z
i
)
∏
j
=
1
n
(
s
−
p
j
)
=
−
1
∠
G
(
s
)
H
(
s
)
=
18
0
∘
+
k
36
0
∘
(
k
=
0
,
1
,
2
,
⋯
,
n
−
m
−
1
)
⟶
相
角
条
件
∣
G
(
s
)
H
(
s
)
∣
=
1
⟶
幅
值
条
件
\begin{aligned} &G(s) H(s)=\frac{K \prod_{i=1}^{m}\left(s-z_{i}\right)}{\prod_{j=1}^{n}\left(s-p_{j}\right)}=-1 \\ &\angle G(s) H(s)=180^{\circ}+k 360^{\circ} (k=0,1,2, \cdots, n-m-1) \longrightarrow 相角条件\\ &|G(s) H(s)|=1 \longrightarrow 幅值条件\\ \end{aligned}
G(s)H(s)=∏j=1n(s−pj)K∏i=1m(s−zi)=−1∠G(s)H(s)=180∘+k360∘(k=0,1,2,⋯,n−m−1)⟶相角条件∣G(s)H(s)∣=1⟶幅值条件
相角条件决定了整条根轨迹,即那些点是极点。(由复变函数,复数的指数形式得到)
幅值条件决定了极点 s 的匹配增益值。
例7.3:已知开环零极点为:
z
1
=
−
1
\mathrm{z}_{1}=-1
z1=−1
p
1
=
−
2
p_{1}=-2
p1=−2
p
2
=
−
1.5
\mathbf{p}_{2}=-\mathbf{1 . 5}
p2=−1.5
p
3
=
0.5
\mathbf{p}_{3}=\mathbf{0 . 5}
p3=0.5
验证:
s
2
,
3
=
−
1.09
±
j
2.07
s_{2,3}=-1.09 \pm j 2.07
s2,3=−1.09±j2.07在根轨迹上。
K
(
s
+
1
)
(
s
+
2
)
(
s
+
1.5
)
(
s
−
0.5
)
=
−
1
\frac{K(s+1)}{(s+2)(s+1.5)(s-0.5)}=-1
(s+2)(s+1.5)(s−0.5)K(s+1)=−1
s
1
=
−
0.825
\mathbf{s}_{1}=-\mathbf{0 . 8 2 5}
s1=−0.825
根轨迹的绘制方法
根轨迹的分支数(开环极点个数)
N 阶系统有 N个闭环极点。根轨迹的分支数为系统阶数, 也等于开环极点的个数。
根轨迹的对称性
N 阶系统的 N个闭环极点, 要么是实根, 要么是共轭复根,因此,根轨迹关于实轴对称。
根轨迹的起点(开环极点)
1
+
G
(
s
)
H
(
s
)
=
1
+
K
(
s
−
z
1
)
(
s
−
z
2
)
…
(
s
−
z
m
)
(
s
−
p
1
)
(
s
−
p
2
)
…
(
s
−
p
n
)
=
0
(
s
−
p
1
)
(
s
−
p
2
)
…
(
s
−
p
n
)
+
K
(
s
−
z
1
)
(
s
−
z
2
)
…
(
s
−
z
m
)
=
0
\begin{aligned} &1+G(s) H(s)=1+\frac{K\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)}=0 \\ &\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)+K\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)=0 \end{aligned}
1+G(s)H(s)=1+(s−p1)(s−p2)…(s−pn)K(s−z1)(s−z2)…(s−zm)=0(s−p1)(s−p2)…(s−pn)+K(s−z1)(s−z2)…(s−zm)=0
K
→
0
K \rightarrow 0
K→0
(
s
−
p
1
)
(
s
−
p
2
)
…
(
s
−
p
n
)
=
0
\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)=0
(s−p1)(s−p2)…(s−pn)=0
即开环特征方程要为0,根轨迹起始于开环极点。
根轨迹的终点(开环零点)
1 + G ( s ) H ( s ) = 1 + K ( s − z 1 ) ( s − z 2 ) … ( s − z m ) ( s − p 1 ) ( s − p 2 ) … ( s − p n ) = 0 ( s − p 1 ) ( s − p 2 ) … ( s − p n ) + K ( s − z 1 ) ( s − z 2 ) … ( s − z m ) = 0 \begin{aligned} &1+G(s) H(s)=1+\frac{K\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)}=0\\ &\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)+K\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)=0 \end{aligned} 1+G(s)H(s)=1+(s−p1)(s−p2)…(s−pn)K(s−z1)(s−z2)…(s−zm)=0(s−p1)(s−p2)…(s−pn)+K(s−z1)(s−z2)…(s−zm)=0
K
→
∞
K \rightarrow \infty
K→∞
(
s
−
z
1
)
(
s
−
z
2
)
…
(
s
−
z
m
)
=
0
\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)=0
(s−z1)(s−z2)…(s−zm)=0
根轨迹终上于开环零点。(m个有限零点、n-m个无限零点,无限零点趋于无穷)
实轴上的根轨迹段(右边开环零极点奇数个)
实轴上的点 ,其右侧的开环零点、极点的个数之和为奇数时,该点在根轨迹上。
实轴上的点 在根轨迹上,必须满足相角条件:
∑
ϕ
j
−
∑
θ
i
=
(
2
k
+
1
)
π
\sum \phi_{j}-\sum \theta_{i}=(2 k+1) \pi
∑ϕj−∑θi=(2k+1)π
上式左边的各个相角由开环零、极点诱导产生。
共轭开环零点或极点,诱导的相角成对出现,且为360
∘
,
^{\circ},
∘, 对是否满足相角条件无实质性影响。
s
1
s_{1} \quad
s1 左侧的开环实零点或极点
,
,
, 诱导的相角都为0
∘
,
^{\circ},
∘, 对是否满足相角条件无实质性影响。
s
1
s_{1} \quad
s1 右侧的开环实零点或极点,诱导的相角都为180
∘
,
^{\circ},
∘, 因此,右侧开环实零点和极点个数之和 为奇数时,相角条件得以满足。(也就是多个180°的加减)
分离点(会和点)
根轨迹在S平面上相遇 , 表明系统有相同的根。即根轨迹上的分离点/会合点与特征方程式的重根相对应。
根据根轨迹方程(算分离点会和点一定要先化成根轨迹形式) :
G
(
s
)
H
(
s
)
=
K
P
(
s
)
Q
(
s
)
=
−
1
G
(
s
)
H
(
s
)
=
K
∏
(
s
+
z
i
)
∏
j
=
1
n
−
1
(
s
+
p
j
)
=
K
P
(
s
)
Q
(
s
)
其中
P
(
s
)
=
∏
i
=
1
m
(
s
+
z
j
)
Q
(
s
)
=
∏
j
=
1
n
(
s
+
p
j
)
\begin{aligned} &G(s) H(s)=K \frac{P(s)}{Q(s)}=-1 \\ &G(s) H(s)=\frac{K \prod\left(s+z_{i}\right)}{\prod_{j=1}^{n-1}\left(s+p_{j}\right)}=K \frac{P(s)}{Q(s)}\\ &\text { 其中 } P(s)=\prod_{i=1}^{m}\left(s+z_{j}\right) Q(s)=\prod_{j=1}^{n}\left(s+p_{j}\right) \end{aligned}
G(s)H(s)=KQ(s)P(s)=−1G(s)H(s)=∏j=1n−1(s+pj)K∏(s+zi)=KQ(s)P(s) 其中 P(s)=i=1∏m(s+zj)Q(s)=j=1∏n(s+pj)
换个角度,得到极点s 的匹配增益值函数:
K
=
−
Q
(
s
)
P
(
s
)
K=-\frac{Q(s)}{P(s)}
K=−P(s)Q(s)
这是N个定义域不同的匹配增益值函数。
匹配增益值函数分支在极点s的实定义域内单调增 ( 减 ) , 且在会和点处取得极大值。
匹配增益值函数分支在极点s的实定义域内单调减 ( 增 ) , 且在分离点处取得极小值。
分离点和会合点是实数域内极值点,其必要 条件为 :
d
K
d
s
=
−
P
(
s
)
Q
′
(
s
)
−
P
′
(
s
)
Q
(
s
)
P
2
(
s
)
=
0
\frac{d K}{d s}=-\frac{P(s) Q^{\prime}(s)-P^{\prime}(s) Q(s)}{P^{2}(s)}=0
dsdK=−P2(s)P(s)Q′(s)−P′(s)Q(s)=0
再考虑到
K
≥
0
K \geq 0
K≥0 (且为实数)的约束条件,就能得到真正的分离点和会合点。
分离点和会和点表面定义域不同但拥有相同的增益K。
还有另一种方法是
∑
j
=
1
m
1
d
−
2
j
=
∑
i
=
1
n
1
d
−
p
i
\sum_{j=1}^{m} \frac{1}{d-2_{j}}=\sum_{i=1}^{n} \frac{1}{d-p_{i}}
j=1∑md−2j1=i=1∑nd−pi1
渐进线
共有
(
n
−
m
)
(n-m)
(n−m) 条根轨迹分支沿着一组渐近线趋向无 穷远处 , 渐近线与实轴夹角为
ϕ
A
\phi_{A}
ϕA, 与实轴交点为同一 点
σ
A
\sigma_{A }
σA
渐近线与实轴的夹角:
ϕ
A
=
(
2
k
+
1
)
18
0
∘
n
−
m
,
k
=
0
,
1
,
2
,
⋯
,
n
−
m
−
1
\phi_{A}=\frac{(2 k+1) 180^{\circ}}{n-m}, k=0,1,2, \cdots, n-m-1
ϕA=n−m(2k+1)180∘,k=0,1,2,⋯,n−m−1
渐近线与实轴的交点(渐进中心) :
σ
A
=
∑
i
=
1
n
(
−
p
i
)
−
∑
j
=
1
m
(
−
z
j
)
n
−
m
\sigma_{A}=\frac{\sum\limits_{i=1}^{n}\left(-p_{i}\right)-\sum\limits_{j=1}^{m}\left(-z_{j}\right)}{n-m}
σA=n−mi=1∑n(−pi)−j=1∑m(−zj)
与虚轴的交点(对应劳斯表为0的时候)
A. 利用特征方程求取 用
j
ω
j \omega
jω 替代
s
s
s, 令特征方程的实部、虚部等 于零,求得
ω
\omega
ω 和对应的
K
。
K_{\text {。 }}
K。
1
+
G
(
s
)
H
(
s
)
∣
s
=
j
ω
=
0
1+\left.G(s) H(s)\right|_{s=j \omega}=0
1+G(s)H(s)∣s=jω=0
B. 用劳斯判据求取确定稳定性改变时,增益K 的临界值,再带入特征方程求得交点
j
ω
j \omega
jω 。
出射角和入射角
当开环零、极点为实数时,根轨迹或左或右沿实轴发展 : 当开环零、极点为复数时, 根轨迹离开复极点的出发角称为出射角 ; 趋于复零点的终止角称为入射角。
根轨迹始终满足相角条件
∑
ϕ
j
−
∑
θ
i
=
(
2
k
+
1
)
π
\sum \phi_{j}-\sum \theta_{i}=(2 k+1) \pi
∑ϕj−∑θi=(2k+1)π
根轨迹点 s s s 趋近开环出发极点 p r p_{r} pr 时,两者之差的相角正好是出射角, 而 s \mathrm{s} s 与其他开环零、极点诱导的相角,等效于由 p r p_{r} pr 与其他开环零、极点诱导产生的相角。
θ
p
r
=
(
2
k
+
1
)
π
+
(
∑
j
=
1
m
φ
z
j
p
r
−
∑
i
=
1
(
i
≠
r
)
n
θ
p
i
p
r
)
\begin{aligned} \theta_{p_{r}}=(2 k+1) \pi+\left(\sum\limits_{j=1}^{m} \varphi_{z_{j} p_{r}}-\sum\limits_{i=1 \atop(i \neq r)}^{n} \theta_{p_{i} p_{r}}\right) \end{aligned}
θpr=(2k+1)π+⎝⎜⎛j=1∑mφzjpr−(i=r)i=1∑nθpipr⎠⎟⎞
k
=
0
,
±
1
,
±
2
,
⋯
k=0,\pm 1,\pm 2, \cdots
k=0,±1,±2,⋯
入射角有类似的结论。
φ
z
r
=
(
2
k
+
1
)
π
−
(
∑
j
=
1
(
j
≠
r
)
m
φ
z
j
z
r
−
∑
i
=
1
n
θ
p
i
z
r
)
\begin{aligned} \varphi_{z_{r}}=(2 k+1) \pi-\left(\sum_{j=1 \atop(j \neq r)}^{m} \varphi_{z_{j} z_{r}}-\sum_{i=1}^{n} \theta_{p_{i} z_{r}}\right) \end{aligned}
φzr=(2k+1)π−⎝⎜⎛(j=r)j=1∑mφzjzr−i=1∑nθpizr⎠⎟⎞
k
=
0
,
±
1
,
±
2
,
⋯
k=0,\pm 1,\pm 2, \cdots
k=0,±1,±2,⋯
基于根轨迹的控制系统分析
典型传递函数的根轨迹
基于根轨迹的参数分析与设计
单位负反馈系统的特征方程和根轨迹草图如下,试设计和分析根轨迹参数的影响。
1
+
K
s
(
s
+
1
)
(
s
+
2
)
=
0
1+\frac{K}{s(s+1)(s+2)}=0
1+s(s+1)(s+2)K=0
(1) 闭环系统稳定的参数取值范围
根轨迹虚轴穿越点 :
{
ω
=
±
2
K
=
6
\left\{\begin{array}{l}\omega=\pm \sqrt{2} \\ K=6\end{array}\right.
{ω=±2K=6
0
<
K
<
6
0<K<6
0<K<6
(2) 稳定的欠阻尼系统的参数取值范围 ?
根轨迹分离点 :
s
2
=
−
0.42
,
K
=
0.38
s_{2}=-0.42, K=0.38
s2=−0.42,K=0.38
0.38
<
K
<
6
0.38<K<6
0.38<K<6
(3) 主导二阶系统的参数取值范围(10 倍)
s
3
+
3
s
2
+
2
s
+
K
=
(
s
+
0.42
)
2
(
s
−
s
3
)
s
3
=
−
2.16
\begin{aligned} &s^{3}+3 s^{2}+2 s+K=(s+0.42)^{2}\left(s-s_{3}\right)\\ &s_{3}=-2.16 \end{aligned}
s3+3s2+2s+K=(s+0.42)2(s−s3)s3=−2.16
尚不满足10倍的条件。
增大K,主导二阶系统将是欠阻尼的。
s
3
+
3
s
2
+
2
s
+
K
=
(
s
−
a
+
j
b
)
(
s
−
a
−
j
b
)
(
s
−
10
a
)
s
1
,
2
=
−
1
4
±
j
21
4
,
s
3
=
−
10
4
,
K
=
55
16
=
3.44
3.44
≤
K
≤
6
\begin{array}{c} s^{3}+3 s^{2}+2 s+K=(s-a+j b)(s-a-j b)(s-10 a) \\ s_{1,2}=-\frac{1}{4} \pm j \frac{\sqrt{21}}{4}, s_{3}=-\frac{10}{4}, K=\frac{55}{16}=3.44 \\ 3.44 \leq K \leq 6 \end{array}
s3+3s2+2s+K=(s−a+jb)(s−a−jb)(s−10a)s1,2=−41±j421,s3=−410,K=1655=3.443.44≤K≤6
广义根轨迹
如果想要调节其他的参数,那么就要将式子化成类似根轨迹但不是根轨迹的式子。
一幅根轨迹在手,调节参数有扮头 !
(比例调节器)
调节其他参数 ?
1
+
K
∗
∏
j
=
1
m
(
s
−
z
j
)
∏
i
=
1
n
(
s
−
p
i
)
=
0
1+\frac{K^{*} \prod_{j=1}^{m}\left(s-z_{j}\right)}{\prod_{i=1}^{n}\left(s-p_{i}\right)}=0
1+∏i=1n(s−pi)K∗∏j=1m(s−zj)=0
等效开环传递函数
1
+
a
P
(
s
)
Q
(
s
)
=
0
1+\frac{a P(s)}{Q(s)}=0
1+Q(s)aP(s)=0
用a顶替K的位置 ,绘制广义根轨迹
K=1, 但兴趣在于开环极点参数 a 对 闭环极点的影响,试绘制关于a 的根轨迹。
1
+
K
s
(
s
+
a
)
=
0
⟶
1
+
a
s
s
2
+
K
=
0
1+\frac{K}{s(s+a)}=0 \quad \longrightarrow 1+\frac{a s}{s^{2}+K}=0
1+s(s+a)K=0⟶1+s2+Kas=0
特征 | 数值 |
---|---|
起始点 | s 1 , 2 = ± j s_{1,2}=\pm j s1,2=±j |
出射角 | θ a = 18 0 ∘ \theta_{a}=180^{\circ} θa=180∘ |
会合点 | s 1 , 2 = − 1 , a = 2 s_{1,2}=-1, a=2 s1,2=−1,a=2 |
增大二阶开环极点参数 a ,系统阻尼增大,直至过阻尼。
调节多个参数 ?使用多个根轨迹,或根轨迹族。 或者参见参数整定专题。
上面的例子,绘制二阶开环极点参数 a 变化时,以 增益 k参数的根轨迹族,可以同时看出多参数影响。
增大二阶开环极点参数 a , 原根轨迹族上 与K=1匹配的闭环极点构成了关于参数 a 的根 轨迹。
控制器对根轨迹的影响
对于固定的系统,由前面的例子我们可以看到,要求性能指标的范围是相当有限的,若是满足不了固定的参数,而又不能对系统本身做更改,我们就要考虑附加额外环节,即附加一个控制器。
性能指标冲突,参数调节无济于事→调整系统结构,利用 控制器校正改善性能。
控制器分类
附加开环零极点对二阶系统的影响(几种不同控制器的影响)
开环零点/微分控制器的影响(极端效应、适度效应、优选效应)
在不考虑控制器的情况下,根轨迹会是这样
K
(
T
1
s
+
1
)
(
T
2
s
+
1
)
\frac{K}{\left(T_{1} s+1\right)\left(T_{2} s+1\right)}
(T1s+1)(T2s+1)K
0 ≤ z<1(零点介于原点和靠右极点之间)极端效应,始终过阻尼
1<z<2(零点介于两个极点之间)适度效应
z>2(零点在-∞和最左极点之间)优选效应
结论
增加合适的开环零点, 可以使根轨迹产生向左弯曲的倾向,提高系统阻尼比(等价ξ减小) 有利于提高系统稳定性和阻尼比。
开环极点/积分环节的影响()
d≤1(新零点在两个极点右边)
1<d<2(新极点介于两个极点之间)
d>2(新零点在两个极点左边)
结论
增加开环极点,将使根轨迹产生向右弯曲的倾向。这不利于系统稳 定性 , 但有利于稳态精度。1/s是积分环节的极端情况。
开环零极点对
d>z, 微分效应占上风(下面大)
根轨迹向左弯曲
z>d, 积分效应占上风(上面大)
根轨迹向右弯曲
插入点的影响
PD控制器输出校正,附加闭环零点 ( 参见第七讲 )
PD控制器串联校正,附加开环零点
LP控制器输出校正,附加闭环极点 ( 参见第七讲 )
LP控制器中联校正,附加开环极点
PID控制器
比例调节
增大比例系数: 超调量增大, 调节时间不变, 稳态误差减小, 稳定性不变。
G ( s ) H ( s ) = K ( s + 1 ) ( s + 2 ) G(s) H(s)=\frac{K}{(s+1)(s+2)} G(s)H(s)=(s+1)(s+2)K
纯微分控制
增大纯微分系数: 出现过阻尼, 调节时间变大,稳态误差不变, 稳定性变差。
G
(
s
)
H
(
s
)
=
K
s
(
s
+
1
)
(
s
+
2
)
G(s) H(s)=\frac{K s}{(s+1)(s+2)}
G(s)H(s)=(s+1)(s+2)Ks
纯积分控制
增大纯积分系数: 超调量增大 调节时间变大 型数变大 , 改善稳态误差 稳定性变差 , 直至失稳。
G
(
s
)
H
(
s
)
=
K
s
(
s
+
1
)
(
s
+
2
)
G(s) H(s)=\frac{{K}}{s(s+1)(s+2)}
G(s)H(s)=s(s+1)(s+2)K
PID控制器
是药三分毒 !熟悉药理,对症下药!综合施治 !
G
c
(
s
)
=
K
P
+
K
I
1
s
+
K
D
s
G_{c}(s)=K_{P}+K_{I} \frac{1}{s}+K_{D} s
Gc(s)=KP+KIs1+KDs
PID控制器参数对系统阶跃响应性能的影响效果