自动控制原理->根轨迹

习题自测

根轨迹基本概念

判断题

1.根轨迹是特征方程 1 + K G ( s ) = 0 1+\mathrm{KG}(s)=0 1+KG(s)=0 的根,随着 K \mathrm{K} K 从 0 变化到 + ∞ +\infty + 时的运动轨迹。
2.根轨迹的条数是系统的极点个数。
3.根轨迹取决于特征方程给出的幅值条件。
4.根轨迹上的一点s,是增益K取得幅值条件决定的匹配值时的极点。
5.我们能够从根轨迹中读出控制系统性能的诸多信息。

√√×√√

根轨迹的绘制方法

判断题

1.根轨迹的条数是系统的零点个数。
2.根轨迹起始于开环极点,终止于开环零点。
3.实轴上点s的右侧有奇数个开环零极点,则它位于根轨迹之上。
4.根轨迹的多条渐进线相交于实轴上的渐进中心。
5.增益K作为根轨迹点s(实域)的函数,在分离点处取得极大值。
6.增益K作为根轨迹点s(实域)的函数,在汇合点处取得极大值。
7.增益K取根轨迹点与实轴交点的匹配值时,系统不稳定。
8.根轨迹在实轴上只能有0度或180度的出射角和入射角。
9.根轨迹复数起始点或终止点处, 有不确定的出射角和入射角。
×√√√√×√√×

计算题

单位负反馈系统的特征方程如下,试绘制其根轨迹草图。
1 + K s ( s + 1 ) ( s + 2 ) = 0 1+\frac{K}{s(s+1)(s+2)}=0 1+s(s+1)(s+2)K=0

第一步,确定起始点和终止点
起点 : 0,-1,-2 ;
终点 : ∞ , ∞ , ∞ : \infty, \infty, \infty :,,
在这里插入图片描述
第二步,确定实轴上的根轨迹段
( − 10 ) , ( − ∞ − 2 ) (-10),(-\infty-2) (10),(2)
第三步,确定分离点或会合点
系统的开环传递函数为:
G ( s ) H ( s ) = K s ( s + 1 ) ( s + 2 ) P ( s ) = 1 , Q ( s ) = s ( s + 1 ) ( s + 2 ) d K d s = − P ( s ) Q ′ ( s ) − P ′ ( s ) Q ( s ) P 2 ( s ) = 3 s 2 + 6 s + 2 = 0 \begin{aligned} &G(s) H(s)=\frac{K}{s(s+1)(s+2)} \\ &P(s)=1, Q(s)=s(s+1)(s+2) \\ &\frac{d K}{d s}=-\frac{P(s) Q^{\prime}(s)-P^{\prime}(s) Q(s)}{P^{2}(s)}=3 s^{2}+6 s+2=0 \end{aligned} G(s)H(s)=s(s+1)(s+2)KP(s)=1,Q(s)=s(s+1)(s+2)dsdK=P2(s)P(s)Q(s)P(s)Q(s)=3s2+6s+2=0

求得: s 1 = − 1.58 , s 2 = − 0.42 s_{1}=-1.58, \quad s_{2}=-0.42 s1=1.58,s2=0.42
代入特征方程: K = − Q ( s ) P ( s ) = − s ( s + 1 ) ( s + 2 ) K=-\frac{Q(s)}{P(s)}=-s(s+1)(s+2) K=P(s)Q(s)=s(s+1)(s+2)
s 1 \mathrm{s}_{1} s1 λ , K = − 0.384 < 0 , \lambda, K=-0.384<0, λ,K=0.384<0, 故舍去 i i i
s 2 s_{2} s2 λ , K = 0.384 > 0 , \lambda, K=0.384>0, λ,K=0.384>0, 是分离点。
在这里插入图片描述
第四步,确定渐近线
渐近线共有3条(n-m),渐近线的倾角:
ϕ A = ( 2 k + 1 ) 18 0 ∘ n − m , k = 0 , 1 , 2 , ⋯   , n − m − 1 \phi_{A}=\frac{(2 k+1) 180^{\circ}}{n-m}, k=0,1,2, \cdots, n-m-1 ϕA=nm(2k+1)180,k=0,1,2,,nm1
k = 0 , 1 , 2 , k=0,1,2, k=0,1,2, 得到:
ϕ A 1 = 6 0 ∘ ϕ A 2 = 18 0 ∘ ϕ A 3 = 30 0 ∘ \phi_{A 1}=60^{\circ} \quad \phi_{A 2}=180^{\circ} \quad \phi_{A 3}=300^{\circ} ϕA1=60ϕA2=180ϕA3=300
渐近线与实轴的交点 ( 渐进中心 ) :
σ A = − ( 0 + 1 + 2 ) + 0 3 − 0 = − 1 \sigma_{A}=-\frac{(0+1+2)+0}{3-0}=-1 σA=30(0+1+2)+0=1
在这里插入图片描述
第五步,确定根轨迹与虚轴交点
特征方程:
s 3 + 3 s 2 + 2 s + K = 0 s^{3}+3 s^{2}+2 s+K=0 s3+3s2+2s+K=0

s = j ω \quad s=j \omega s=jω
− j ω 3 − 3 ω 2 + 2 j ω + K = 0 { ω 3 = 2 ω K = 3 ω 2 ⟶ { ω = ± 2 K = 6 \begin{array}{r} -j \omega^{3}-3 \omega^{2}+2 j \omega+K=0 \\ \left\{\begin{array}{l} \omega^{3}=2 \omega \\ K=3 \omega^{2} \end{array} \quad \longrightarrow\left\{\begin{array}{l} \omega=\pm \sqrt{2} \\ K=6 \end{array}\right.\right. \end{array} jω33ω2+2jω+K=0{ω3=2ωK=3ω2{ω=±2 K=6
在这里插入图片描述
在这里插入图片描述
这个三阶系统可以被二阶系统代替,而且有可能失稳。

确定下面的系统的根轨迹的出射角。
G ( s ) H ( s ) = K ( s + 2 ) s 2 + 2 s + 3 G(s) H(s)=\frac{K(s+2)}{s^{2}+2 s+3} G(s)H(s)=s2+2s+3K(s+2)
解:开环极点为 p 1 , 2 = − 1 ± j 2 \quad p_{1,2}=-1 \pm j \sqrt{2} p1,2=1±j2
于是:
θ p 1 = 5 5 ∘ − 9 0 ∘ ± 18 0 ∘ = 14 5 ∘ \begin{aligned} \theta_{p 1} &=55^{\circ}-90^{\circ} \pm 180^{\circ} \\ &=145^{\circ} \end{aligned} θp1=5590±180=145

在这里插入图片描述

基于根轨迹的控制系统分析设计

判断题

1.调节K时,根轨迹能够提供系统极点位置以及性能变化的全貌。
2.比例控制器(调节)是最简便的控制器,它能同时改变根轨迹和极点配置。
3.附加开环极点(积分器),根轨迹将向右侧偏离,稳定性降低。
4.附加开环零点(微分器),根轨迹将向右侧偏离,稳定性降低。
5.与附加闭环极点(积分器)相反,附加开环极点减小等效阻尼的效应。
6.与附加闭环零点(微分器)相反,附加开环零点减小等效阻尼的效应。
7.附加开环极点(积分器),有利于提高系统的精度。
8.PID控制器兼顾比例、积分和微分调节特性,是最常用的控制器。
√×√×√×√√

根轨迹

根轨迹的基本概念

对于系统的动态参数变化,每变化一次增益,我们就要重新求解一次特征方程,非常地麻烦,非常地不爽,非常地不快乐,那么能不能避免这样的计算呢?可不可以不写特征方程也能对极点的变化有一个清晰的判断呢?根轨迹便是为解决这一问题而生的。为了不做老黄牛,在这一章里我们就要熟练掌握根轨迹图的绘制方法,并能利用根轨迹法设计控制器。

我们举例看看没有根轨迹会多么让人烦躁,已知单位负反馈系统的开环传递函数如下,
G ( s ) = 5 K A s ( s + 34.5 ) G(s)=\frac{5 K_{A}}{s(s+34.5)} G(s)=s(s+34.5)5KA

Ka=200、1500和13.5时,试分别确定闭环极点 并分析系统性能。

ϕ ( s ) = G ( s ) 1 + G ( s ) = 5 K A s 2 + 34.5 s + 5 K A K A = 200 , ∴ ϕ ( s ) = 1000 s 2 + 34.5 s + 1000 ∴ ω n 2 = 1000 , 2 ξ ⋅ ω n = 34.5 ∴ ω n = 31.6 , ξ = 34.5 2 ω n = 0.545 t p = π ω n 1 − ξ 2 = 0.12 t s ≈ 3 ξ ⋅ ω n = 0.174 σ % = e − π ξ / 1 − ξ 2 × 100 % = 13 % N = t s 2 π / ω d = t s ω n 1 − ξ 2 2 π = 0.72 闭 环 极 点 为 : S 1 , 2 = − 17.25 ± j 26.5 \begin{aligned} &\phi(s)=\frac{G(s)}{1+G(s)}=\frac{5 K_{A}}{s^{2}+34.5 s+5 K_{A}}\\ &K_{A}=200, \therefore \phi(s)=\frac{1000}{s^{2}+34.5 s+1000}\\ &\therefore \omega_{n}^{2}=1000,2 \xi \cdot \omega_{n}=34.5\\ &\therefore \omega_{n}=31.6, \xi=\frac{34.5}{2 \omega_{n}}=0.545\\ &t_{p}=\frac{\pi}{\omega_{n} \sqrt{1-\xi^{2}}}=0.12\\ &t_{s} \approx \frac{3}{\xi \cdot \omega_{n}}=0.174\\ &\sigma \%=e^{-\pi \xi / \sqrt{1-\xi^{2}}} \times 100 \%=13 \%\\ &N=\frac{t_{s}}{2 \pi / \omega_{d}}=\frac{t_{s} \omega_{n} \sqrt{1-\xi^{2}}}{2 \pi}=0.72\\ &闭环极点为 : \quad S_{1,2}=-17.25 \pm j 26.5 \end{aligned} ϕ(s)=1+G(s)G(s)=s2+34.5s+5KA5KAKA=200,ϕ(s)=s2+34.5s+10001000ωn2=1000,2ξωn=34.5ωn=31.6,ξ=2ωn34.5=0.545tp=ωn1ξ2 π=0.12tsξωn3=0.174σ%=eπξ/1ξ2 ×100%=13%N=2π/ωdts=2πtsωn1ξ2 =0.72S1,2=17.25±j26.5

考察 K A = 1500 K_{A}=1500 KA=1500
ω n = 86.2 ; ξ = 0.2 \omega_{n}=86.2 ; \xi=0.2 ωn=86.2;ξ=0.2

此时有:
t p = 0.037 , t s = 0.174 σ 0 / o = 52.7 % \begin{array}{l} t_{p}=0.037, t_{s}=0.174 \\ \sigma^{0} / \mathrm{o}=52.7 \% \end{array} tp=0.037,ts=0.174σ0/o=52.7%

闭环极点为 : S 1 , 2 = − 17.25 ± j 84.5 : S_{1,2}=-17.25 \pm j 84.5 S1,2=17.25±j84.5
调大 K A K_{A} KA 后,极点位置垂直变化, ξ \xi ξ 变小 , ω n , \omega_{n} ,ωn 变大 ; t p ; t_{p} ;tp 变小 , σ % , \sigma \% ,σ% 变大 ; ; ; t s t_{s} ts 保持不变。

考察 K A = 13.5 K_{A}=13.5 KA=13.5
ω n = 8.22 , ξ = 2.1 \omega_{n}=8.22, \xi=2.1 ωn=8.22,ξ=2.1

此时系统变成了过阻尼,过渡过程调节时间由较大的时间常数决定。(1/T1与1/T2仅中间符号不同)
1 T 1 = w n ( ξ − ξ 2 − 1 ) t s ≈ 3 T 1 = 1.46 \begin{array}{l} \frac{1}{T_{1}}=w_{n}\left(\xi-\sqrt{\xi^{2}-1}\right) \\ t_{s} \approx 3 T_{1}=1.46 \end{array} T11=wn(ξξ21 )ts3T1=1.46

闭环极点为 : S 1 = − 32.44 S 2 = − 2.08 : \quad S_{1}=-32.44 \quad S_{2}=-2.08 S1=32.44S2=2.08
在这里插入图片描述
1、调参数可以改变极点位置,进而改变系统性能。
2、兼顾稳、快、准,如何调参数 ?

在这里插入图片描述
比例控制是最典型的控制结构
上述案例考察了调节K时,极点位置、系统性能的变化,能否简便地获知K变化时,极点位置以及系统性能变化的全貌 ?
美国工程师W.R. Evans在1948年发表了《控制系统的图解分析》。
根轨迹 : 开环系统某一参数从 0 变到正无穷时,闭环系统的极点在s平面上变化的轨迹。

确定如下闭环系统的根轨迹。
解:
闭环传递函数: T (   s ) = K   s 2 +   s + K \quad T(\mathrm{~s})=\frac{K}{\mathrm{~s}^{2}+\mathrm{~s}+K} T( s)= s2+ s+KK
特征方程: s 2 +   s + K = 0 \quad \mathrm{s}^{2}+\mathrm{~s}+K=0 s2+ s+K=0
特征方程的根: s 1 , 2 = − 0.5 ± 0.5 1 − 4 K \quad \mathrm{s}_{1,2}=-0.5 \pm 0.5 \sqrt{1-4 K} s1,2=0.5±0.514K

考察 K K K 从零到无穷大变化时,极点的变化情况
s 1 , 2 = − 0.5 ± 0.5 1 − 4 K \mathrm{s}_{1,2}=-0.5 \pm 0.5 \sqrt{1-4 K} s1,2=0.5±0.514K

1 , K = 0 \mathbf{1}, \boldsymbol{K}=\mathbf{0} 1,K=0 , s 1 = 0 ,   s 2 = − 1 , \quad \mathrm{s}_{1}=0, \mathrm{~s}_{2}=-1 ,s1=0, s2=1
2、0 < K < 0.25 <K<0.25 <K<0.25 时,两个互异负实根 s 1 , 2 = − 0.5 ± 0.5 1 − 4 K \mathrm{s}_{1,2}=-0.5 \pm 0.5 \sqrt{1-4 K} s1,2=0.5±0.514K
3、K=0.25 时 , s 1 , 2 = − 0.5 , \quad \mathrm{s}_{1,2}=-0.5 ,s1,2=0.5
4、0.25 < K < ∞ <K<\infty <K< , s 1 , 2 = − 0.5 ± 0.5 j 4 K − 1 , \mathrm{s}_{1,2}=-0.5 \pm 0.5 j \sqrt{4 K-1} ,s1,2=0.5±0.5j4K1
在这里插入图片描述

根轨迹图 , 以系统根轨迹增益K为参变量 , 当K 由 0 → ∞ 0 \rightarrow \infty 0 , , , 系统闭环极点在 s s s 平面上变化的轨迹。

在这里插入图片描述
画图首先要会读图,已知极点变化全貌,如何解读性能 ?
四条根轨迹显然是四阶系统,K在实半轴越小越稳定,但是会有正实部的出现,无法保持一直稳定,最左边一条根轨迹在K逐渐增大的过程中越来越远离虚轴,时间常数越来越小,所以可以忽略,整个系统就可以简化为一个三阶系统。

根轨迹方程和约束条件

在这里插入图片描述
S平面上的点s在根轨迹上,必须满足闭环特征方程
1 + G ( s ) H ( s ) = 0 1+G(s) H(s)=0 1+G(s)H(s)=0

其中,开环传递函数为:
G ( s ) H ( s ) = K ( s − z 1 ) ( s − z 2 ) … ( s − z m ) ( s − p 1 ) ( s − p 2 ) … ( s − p n ) G(s) H(s)=\frac{K\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)} G(s)H(s)=(sp1)(sp2)(spn)K(sz1)(sz2)(szm)

由特征方程得到:
G ( s ) H ( s ) = K ∏ i = 1 m ( s − z i ) ∏ j = 1 n ( s − p j ) = − 1 ∠ G ( s ) H ( s ) = 18 0 ∘ + k 36 0 ∘ ( k = 0 , 1 , 2 , ⋯   , n − m − 1 ) ⟶ 相 角 条 件 ∣ G ( s ) H ( s ) ∣ = 1 ⟶ 幅 值 条 件 \begin{aligned} &G(s) H(s)=\frac{K \prod_{i=1}^{m}\left(s-z_{i}\right)}{\prod_{j=1}^{n}\left(s-p_{j}\right)}=-1 \\ &\angle G(s) H(s)=180^{\circ}+k 360^{\circ} (k=0,1,2, \cdots, n-m-1) \longrightarrow 相角条件\\ &|G(s) H(s)|=1 \longrightarrow 幅值条件\\ \end{aligned} G(s)H(s)=j=1n(spj)Ki=1m(szi)=1G(s)H(s)=180+k360(k=0,1,2,,nm1)G(s)H(s)=1

相角条件决定了整条根轨迹,即那些点是极点。(由复变函数,复数的指数形式得到)
幅值条件决定了极点 s 的匹配增益值。

例7.3:已知开环零极点为:
z 1 = − 1 \mathrm{z}_{1}=-1 z1=1
p 1 = − 2 p_{1}=-2 p1=2
p 2 = − 1.5 \mathbf{p}_{2}=-\mathbf{1 . 5} p2=1.5
p 3 = 0.5 \mathbf{p}_{3}=\mathbf{0 . 5} p3=0.5
验证: s 2 , 3 = − 1.09 ± j 2.07 s_{2,3}=-1.09 \pm j 2.07 s2,3=1.09±j2.07在根轨迹上。

K ( s + 1 ) ( s + 2 ) ( s + 1.5 ) ( s − 0.5 ) = − 1 \frac{K(s+1)}{(s+2)(s+1.5)(s-0.5)}=-1 (s+2)(s+1.5)(s0.5)K(s+1)=1
s 1 = − 0.825 \mathbf{s}_{1}=-\mathbf{0 . 8 2 5} s1=0.825
在这里插入图片描述

根轨迹的绘制方法

根轨迹的分支数(开环极点个数)

N 阶系统有 N个闭环极点。根轨迹的分支数为系统阶数, 也等于开环极点的个数

根轨迹的对称性

N 阶系统的 N个闭环极点, 要么是实根, 要么是共轭复根,因此,根轨迹关于实轴对称。

根轨迹的起点(开环极点)

1 + G ( s ) H ( s ) = 1 + K ( s − z 1 ) ( s − z 2 ) … ( s − z m ) ( s − p 1 ) ( s − p 2 ) … ( s − p n ) = 0 ( s − p 1 ) ( s − p 2 ) … ( s − p n ) + K ( s − z 1 ) ( s − z 2 ) … ( s − z m ) = 0 \begin{aligned} &1+G(s) H(s)=1+\frac{K\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)}=0 \\ &\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)+K\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)=0 \end{aligned} 1+G(s)H(s)=1+(sp1)(sp2)(spn)K(sz1)(sz2)(szm)=0(sp1)(sp2)(spn)+K(sz1)(sz2)(szm)=0
K → 0 K \rightarrow 0 K0
( s − p 1 ) ( s − p 2 ) … ( s − p n ) = 0 \left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)=0 (sp1)(sp2)(spn)=0
即开环特征方程要为0,根轨迹起始于开环极点。

根轨迹的终点(开环零点)

1 + G ( s ) H ( s ) = 1 + K ( s − z 1 ) ( s − z 2 ) … ( s − z m ) ( s − p 1 ) ( s − p 2 ) … ( s − p n ) = 0 ( s − p 1 ) ( s − p 2 ) … ( s − p n ) + K ( s − z 1 ) ( s − z 2 ) … ( s − z m ) = 0 \begin{aligned} &1+G(s) H(s)=1+\frac{K\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)}=0\\ &\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)+K\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)=0 \end{aligned} 1+G(s)H(s)=1+(sp1)(sp2)(spn)K(sz1)(sz2)(szm)=0(sp1)(sp2)(spn)+K(sz1)(sz2)(szm)=0

K → ∞ K \rightarrow \infty K
( s − z 1 ) ( s − z 2 ) … ( s − z m ) = 0 \left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)=0 (sz1)(sz2)(szm)=0

根轨迹终上于开环零点。(m个有限零点、n-m个无限零点,无限零点趋于无穷)

实轴上的根轨迹段(右边开环零极点奇数个)

实轴上的点 ,其右侧的开环零点、极点的个数之和为奇数时,该点在根轨迹上。
实轴上的点 在根轨迹上,必须满足相角条件:
∑ ϕ j − ∑ θ i = ( 2 k + 1 ) π \sum \phi_{j}-\sum \theta_{i}=(2 k+1) \pi ϕjθi=(2k+1)π

上式左边的各个相角由开环零、极点诱导产生。
共轭开环零点或极点,诱导的相角成对出现,且为360 ∘ , ^{\circ}, , 对是否满足相角条件无实质性影响。
在这里插入图片描述
s 1 s_{1} \quad s1 左侧的开环实零点或极点 , , , 诱导的相角都为0 ∘ , ^{\circ}, , 对是否满足相角条件无实质性影响。
s 1 s_{1} \quad s1 右侧的开环实零点或极点,诱导的相角都为180 ∘ , ^{\circ}, , 因此,右侧开环实零点和极点个数之和 为奇数时,相角条件得以满足。(也就是多个180°的加减)
在这里插入图片描述

分离点(会和点)

在这里插入图片描述
根轨迹在S平面上相遇 , 表明系统有相同的根。即根轨迹上的分离点/会合点与特征方程式的重根相对应。

根据根轨迹方程(算分离点会和点一定要先化成根轨迹形式) :
G ( s ) H ( s ) = K P ( s ) Q ( s ) = − 1 G ( s ) H ( s ) = K ∏ ( s + z i ) ∏ j = 1 n − 1 ( s + p j ) = K P ( s ) Q ( s )  其中  P ( s ) = ∏ i = 1 m ( s + z j ) Q ( s ) = ∏ j = 1 n ( s + p j ) \begin{aligned} &G(s) H(s)=K \frac{P(s)}{Q(s)}=-1 \\ &G(s) H(s)=\frac{K \prod\left(s+z_{i}\right)}{\prod_{j=1}^{n-1}\left(s+p_{j}\right)}=K \frac{P(s)}{Q(s)}\\ &\text { 其中 } P(s)=\prod_{i=1}^{m}\left(s+z_{j}\right) Q(s)=\prod_{j=1}^{n}\left(s+p_{j}\right) \end{aligned} G(s)H(s)=KQ(s)P(s)=1G(s)H(s)=j=1n1(s+pj)K(s+zi)=KQ(s)P(s) 其中 P(s)=i=1m(s+zj)Q(s)=j=1n(s+pj)
换个角度,得到极点s 的匹配增益值函数:
K = − Q ( s ) P ( s ) K=-\frac{Q(s)}{P(s)} K=P(s)Q(s)
这是N个定义域不同的匹配增益值函数。
匹配增益值函数分支在极点s的实定义域内单调增 ( 减 ) , 且在会和点处取得极大值
在这里插入图片描述

匹配增益值函数分支在极点s的实定义域内单调减 ( 增 ) , 且在分离点处取得极小值。
在这里插入图片描述
分离点和会合点是实数域内极值点,其必要 条件为 :
d K d s = − P ( s ) Q ′ ( s ) − P ′ ( s ) Q ( s ) P 2 ( s ) = 0 \frac{d K}{d s}=-\frac{P(s) Q^{\prime}(s)-P^{\prime}(s) Q(s)}{P^{2}(s)}=0 dsdK=P2(s)P(s)Q(s)P(s)Q(s)=0

再考虑到 K ≥ 0 K \geq 0 K0 (且为实数)的约束条件,就能得到真正的分离点和会合点。
分离点和会和点表面定义域不同但拥有相同的增益K。

还有另一种方法是
∑ j = 1 m 1 d − 2 j = ∑ i = 1 n 1 d − p i \sum_{j=1}^{m} \frac{1}{d-2_{j}}=\sum_{i=1}^{n} \frac{1}{d-p_{i}} j=1md2j1=i=1ndpi1

渐进线

共有 ( n − m ) (n-m) (nm) 条根轨迹分支沿着一组渐近线趋向无 穷远处 , 渐近线与实轴夹角为 ϕ A \phi_{A} ϕA, 与实轴交点为同一 点 σ A \sigma_{A } σA
渐近线与实轴的夹角:
ϕ A = ( 2 k + 1 ) 18 0 ∘ n − m , k = 0 , 1 , 2 , ⋯   , n − m − 1 \phi_{A}=\frac{(2 k+1) 180^{\circ}}{n-m}, k=0,1,2, \cdots, n-m-1 ϕA=nm(2k+1)180,k=0,1,2,,nm1

渐近线与实轴的交点(渐进中心) :
σ A = ∑ i = 1 n ( − p i ) − ∑ j = 1 m ( − z j ) n − m \sigma_{A}=\frac{\sum\limits_{i=1}^{n}\left(-p_{i}\right)-\sum\limits_{j=1}^{m}\left(-z_{j}\right)}{n-m} σA=nmi=1n(pi)j=1m(zj)

与虚轴的交点(对应劳斯表为0的时候)

A. 利用特征方程求取 用 j ω j \omega jω 替代 s s s, 令特征方程的实部、虚部等 于零,求得 ω \omega ω 和对应的 K 。  K_{\text {。 }} K 
1 + G ( s ) H ( s ) ∣ s = j ω = 0 1+\left.G(s) H(s)\right|_{s=j \omega}=0 1+G(s)H(s)s=jω=0
B. 用劳斯判据求取确定稳定性改变时,增益K 的临界值,再带入特征方程求得交点 j ω j \omega jω

出射角和入射角

当开环零、极点为实数时,根轨迹或左或右沿实轴发展 : 当开环零、极点为复数时, 根轨迹离开复极点的出发角称为出射角 ; 趋于复零点的终止角称为入射角。
在这里插入图片描述
根轨迹始终满足相角条件
∑ ϕ j − ∑ θ i = ( 2 k + 1 ) π \sum \phi_{j}-\sum \theta_{i}=(2 k+1) \pi ϕjθi=(2k+1)π

根轨迹点 s s s 趋近开环出发极点 p r p_{r} pr 时,两者之差的相角正好是出射角, 而 s \mathrm{s} s 与其他开环零、极点诱导的相角,等效于由 p r p_{r} pr 与其他开环零、极点诱导产生的相角。

θ p r = ( 2 k + 1 ) π + ( ∑ j = 1 m φ z j p r − ∑ i = 1 ( i ≠ r ) n θ p i p r ) \begin{aligned} \theta_{p_{r}}=(2 k+1) \pi+\left(\sum\limits_{j=1}^{m} \varphi_{z_{j} p_{r}}-\sum\limits_{i=1 \atop(i \neq r)}^{n} \theta_{p_{i} p_{r}}\right) \end{aligned} θpr=(2k+1)π+j=1mφzjpr(i=r)i=1nθpipr
k = 0 , ± 1 , ± 2 , ⋯ k=0,\pm 1,\pm 2, \cdots k=0,±1,±2,
入射角有类似的结论。
φ z r = ( 2 k + 1 ) π − ( ∑ j = 1 ( j ≠ r ) m φ z j z r − ∑ i = 1 n θ p i z r ) \begin{aligned} \varphi_{z_{r}}=(2 k+1) \pi-\left(\sum_{j=1 \atop(j \neq r)}^{m} \varphi_{z_{j} z_{r}}-\sum_{i=1}^{n} \theta_{p_{i} z_{r}}\right) \end{aligned} φzr=(2k+1)π(j=r)j=1mφzjzri=1nθpizr
k = 0 , ± 1 , ± 2 , ⋯ k=0,\pm 1,\pm 2, \cdots k=0,±1,±2,

基于根轨迹的控制系统分析

典型传递函数的根轨迹

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于根轨迹的参数分析与设计

单位负反馈系统的特征方程和根轨迹草图如下,试设计和分析根轨迹参数的影响。
1 + K s ( s + 1 ) ( s + 2 ) = 0 1+\frac{K}{s(s+1)(s+2)}=0 1+s(s+1)(s+2)K=0
在这里插入图片描述
(1) 闭环系统稳定的参数取值范围
根轨迹虚轴穿越点 : { ω = ± 2 K = 6 \left\{\begin{array}{l}\omega=\pm \sqrt{2} \\ K=6\end{array}\right. {ω=±2 K=6
0 < K < 6 0<K<6 0<K<6
(2) 稳定的欠阻尼系统的参数取值范围 ?
根轨迹分离点 : s 2 = − 0.42 , K = 0.38 s_{2}=-0.42, K=0.38 s2=0.42,K=0.38
0.38 < K < 6 0.38<K<6 0.38<K<6
(3) 主导二阶系统的参数取值范围(10 倍)
s 3 + 3 s 2 + 2 s + K = ( s + 0.42 ) 2 ( s − s 3 ) s 3 = − 2.16 \begin{aligned} &s^{3}+3 s^{2}+2 s+K=(s+0.42)^{2}\left(s-s_{3}\right)\\ &s_{3}=-2.16 \end{aligned} s3+3s2+2s+K=(s+0.42)2(ss3)s3=2.16
尚不满足10倍的条件。
增大K,主导二阶系统将是欠阻尼的。
s 3 + 3 s 2 + 2 s + K = ( s − a + j b ) ( s − a − j b ) ( s − 10 a ) s 1 , 2 = − 1 4 ± j 21 4 , s 3 = − 10 4 , K = 55 16 = 3.44 3.44 ≤ K ≤ 6 \begin{array}{c} s^{3}+3 s^{2}+2 s+K=(s-a+j b)(s-a-j b)(s-10 a) \\ s_{1,2}=-\frac{1}{4} \pm j \frac{\sqrt{21}}{4}, s_{3}=-\frac{10}{4}, K=\frac{55}{16}=3.44 \\ 3.44 \leq K \leq 6 \end{array} s3+3s2+2s+K=(sa+jb)(sajb)(s10a)s1,2=41±j421 ,s3=410,K=1655=3.443.44K6

广义根轨迹

如果想要调节其他的参数,那么就要将式子化成类似根轨迹但不是根轨迹的式子。
一幅根轨迹在手,调节参数有扮头 !
(比例调节器)
调节其他参数 ?
1 + K ∗ ∏ j = 1 m ( s − z j ) ∏ i = 1 n ( s − p i ) = 0 1+\frac{K^{*} \prod_{j=1}^{m}\left(s-z_{j}\right)}{\prod_{i=1}^{n}\left(s-p_{i}\right)}=0 1+i=1n(spi)Kj=1m(szj)=0

等效开环传递函数
1 + a P ( s ) Q ( s ) = 0 1+\frac{a P(s)}{Q(s)}=0 1+Q(s)aP(s)=0
用a顶替K的位置 ,绘制广义根轨迹

K=1, 但兴趣在于开环极点参数 a 对 闭环极点的影响,试绘制关于a 的根轨迹。
在这里插入图片描述
1 + K s ( s + a ) = 0 ⟶ 1 + a s s 2 + K = 0 1+\frac{K}{s(s+a)}=0 \quad \longrightarrow 1+\frac{a s}{s^{2}+K}=0 1+s(s+a)K=01+s2+Kas=0

特征数值
起始点 s 1 , 2 = ± j s_{1,2}=\pm j s1,2=±j
出射角 θ a = 18 0 ∘ \theta_{a}=180^{\circ} θa=180
会合点 s 1 , 2 = − 1 , a = 2 s_{1,2}=-1, a=2 s1,2=1,a=2

在这里插入图片描述
增大二阶开环极点参数 a ,系统阻尼增大,直至过阻尼。

调节多个参数 ?使用多个根轨迹,或根轨迹族。 或者参见参数整定专题。
上面的例子,绘制二阶开环极点参数 a 变化时,以 增益 k参数的根轨迹族,可以同时看出多参数影响。
在这里插入图片描述
增大二阶开环极点参数 a , 原根轨迹族上 与K=1匹配的闭环极点构成了关于参数 a 的根 轨迹。

控制器对根轨迹的影响

对于固定的系统,由前面的例子我们可以看到,要求性能指标的范围是相当有限的,若是满足不了固定的参数,而又不能对系统本身做更改,我们就要考虑附加额外环节,即附加一个控制器。
性能指标冲突,参数调节无济于事→调整系统结构,利用 控制器校正改善性能。
在这里插入图片描述

控制器分类

在这里插入图片描述
在这里插入图片描述

附加开环零极点对二阶系统的影响(几种不同控制器的影响)
开环零点/微分控制器的影响(极端效应、适度效应、优选效应)

在这里插入图片描述
在不考虑控制器的情况下,根轨迹会是这样
K ( T 1 s + 1 ) ( T 2 s + 1 ) \frac{K}{\left(T_{1} s+1\right)\left(T_{2} s+1\right)} (T1s+1)(T2s+1)K
在这里插入图片描述

0 ≤ z<1(零点介于原点和靠右极点之间)极端效应,始终过阻尼

在这里插入图片描述

1<z<2(零点介于两个极点之间)适度效应

在这里插入图片描述

z>2(零点在-∞和最左极点之间)优选效应

在这里插入图片描述

结论

增加合适的开环零点, 可以使根轨迹产生向左弯曲的倾向,提高系统阻尼比(等价ξ减小) 有利于提高系统稳定性和阻尼比

开环极点/积分环节的影响()

在这里插入图片描述

d≤1(新零点在两个极点右边)

在这里插入图片描述

1<d<2(新极点介于两个极点之间)

在这里插入图片描述

d>2(新零点在两个极点左边)

在这里插入图片描述

结论

增加开环极点,将使根轨迹产生向右弯曲的倾向。这不利于系统稳 定性 , 但有利于稳态精度。1/s是积分环节的极端情况。

开环零极点对

在这里插入图片描述

d>z, 微分效应占上风(下面大)

根轨迹向左弯曲
在这里插入图片描述

z>d, 积分效应占上风(上面大)

根轨迹向右弯曲
在这里插入图片描述

插入点的影响

在这里插入图片描述
PD控制器输出校正,附加闭环零点 ( 参见第七讲 )
在这里插入图片描述
PD控制器串联校正,附加开环零点
在这里插入图片描述
LP控制器输出校正,附加闭环极点 ( 参见第七讲 )
在这里插入图片描述
LP控制器中联校正,附加开环极点

PID控制器
比例调节

在这里插入图片描述
增大比例系数: 超调量增大, 调节时间不变, 稳态误差减小, 稳定性不变。

G ( s ) H ( s ) = K ( s + 1 ) ( s + 2 ) G(s) H(s)=\frac{K}{(s+1)(s+2)} G(s)H(s)=(s+1)(s+2)K

纯微分控制

在这里插入图片描述
增大纯微分系数: 出现过阻尼, 调节时间变大,稳态误差不变, 稳定性变差。
G ( s ) H ( s ) = K s ( s + 1 ) ( s + 2 ) G(s) H(s)=\frac{K s}{(s+1)(s+2)} G(s)H(s)=(s+1)(s+2)Ks

纯积分控制

在这里插入图片描述
增大纯积分系数: 超调量增大 调节时间变大 型数变大 , 改善稳态误差 稳定性变差 , 直至失稳。
G ( s ) H ( s ) = K s ( s + 1 ) ( s + 2 ) G(s) H(s)=\frac{{K}}{s(s+1)(s+2)} G(s)H(s)=s(s+1)(s+2)K

PID控制器

在这里插入图片描述
是药三分毒 !熟悉药理,对症下药!综合施治 !
在这里插入图片描述
G c ( s ) = K P + K I 1 s + K D s G_{c}(s)=K_{P}+K_{I} \frac{1}{s}+K_{D} s Gc(s)=KP+KIs1+KDs
PID控制器参数对系统阶跃响应性能的影响效果
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值