一、公式或原理
1.高斯函数
(1)一维形式
f
(
x
)
=
a
e
−
(
x
−
b
)
2
2
c
2
(1)
f(x)=ae^{\frac{-(x-b)^2}{2c^2}} \tag{1}
f(x)=ae2c2−(x−b)2(1)
其中,a、b与c是实数常数,且a>0。
图:当且仅当
a
=
1
/
c
√
2
π
,高斯积分为
1
,高斯函数为正态分布函数
图:当且仅当a=1/c√2π,高斯积分为1,高斯函数为正态分布函数
图:当且仅当a=1/c√2π,高斯积分为1,高斯函数为正态分布函数
(2)二维形式
G
(
x
,
y
)
=
1
2
π
σ
2
e
−
x
2
+
y
2
2
σ
2
(2)
G(x,y)=\frac{1}{2\pi \sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \tag{2}
G(x,y)=2πσ21e−2σ2x2+y2(2)
图:二维正态分布:均值向量,
2
×
2
协方差矩阵(由标准差和相关系数构成)
图:二维正态分布:均值向量,2×2协方差矩阵(由标准差和相关系数构成)
图:二维正态分布:均值向量,2×2协方差矩阵(由标准差和相关系数构成)
2.高斯公式
设空间闭区域Ω是由分片光滑的闭曲面Σ围成,若函数P(x,y,z),Q(x,y,z),R(x,y,z)在Ω上具有一阶连续偏导数,则有
∭
Ω
(
∂
P
∂
x
+
∂
Q
∂
y
+
∂
R
∂
z
)
d
V
=
∯
Σ
P
d
y
d
z
+
Q
d
z
d
x
+
R
d
x
d
y
,
(3)
\iiint\limits_\Omega (\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dV=\oiint\limits_\Sigma Pdydz+Qdzdx+Rdxdy,\tag{3}
Ω∭(∂x∂P+∂y∂Q+∂z∂R)dV=Σ∬Pdydz+Qdzdx+Rdxdy,(3)
或者
∭
Ω
(
∂
P
∂
x
+
∂
Q
∂
y
+
∂
R
∂
z
)
d
V
=
∯
Σ
(
P
c
o
s
α
+
Q
c
o
s
β
+
R
c
o
s
γ
)
d
S
.
(4)
\iiint\limits_\Omega (\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dV=\oiint\limits_\Sigma (Pcos\alpha+Qcos\beta+Rcos\gamma)dS.\tag{4}
Ω∭(∂x∂P+∂y∂Q+∂z∂R)dV=Σ∬(Pcosα+Qcosβ+Rcosγ)dS.(4)
其中,cosα,cosβ,cosγ是Σ在点(x,y,z)处的法向量的方向余弦,Σ是整个Ω边界曲面外侧。
式(3)(4),即高斯公式的另一种表达形式:
∫
V
∇
⋅
u
⃗
d
V
=
∮
S
u
⃗
⋅
d
S
.
(5)
\int_V \nabla \cdot \vec{u}dV=\oint_S \vec{u} \cdot dS.\tag{5}
∫V∇⋅udV=∮Su⋅dS.(5)
**式(5)给出了封闭曲面积分和相应的体积分之间的变换关系,等号左边微分形式,等号右边积分形式,实际上是一回事。其中,积分形式方便封闭区域相关计算。
3.斯托克斯公式
设
Γ
\Gamma
Γ为分段光滑的空间有向闭曲线,Σ是以
Γ
\Gamma
Γ为边界的分片光滑的有向曲面,
Γ
\Gamma
Γ的正向与Σ的侧能够符合右手规则,函数P(x,y,z),Q(x,y,z),R(x,y,z)在曲面Σ(包括边界
Γ
\Gamma
Γ)上具有一阶连续偏导数,则有:
∬
Σ
(
∂
Q
∂
x
−
∂
P
∂
y
)
d
x
d
y
+
(
∂
R
∂
y
−
∂
Q
∂
z
)
d
y
d
z
+
(
∂
P
∂
z
−
∂
R
∂
x
)
d
z
d
x
=
∮
Γ
P
d
x
+
Q
d
y
+
R
d
z
.
(6)
\iint\limits_\Sigma (\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dxdy+ (\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z})dydz+ (\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x})dzdx=\oint_\Gamma Pdx+Qdy+Rdz. \tag{6}
Σ∬(∂x∂Q−∂y∂P)dxdy+(∂y∂R−∂z∂Q)dydz+(∂z∂P−∂x∂R)dzdx=∮ΓPdx+Qdy+Rdz.(6)
式(6)称斯托克斯公式,它给出了特定曲面块上的第二类曲面积分与其边界曲线上的第二类曲线积分之间的联系。
二、应用领域(不断更新)
1.高斯函数应用
高斯函数应用包括但不限于:
(1)统计学:正态分布的密度函数。
(2)量子力学:波函数、真空态。
(3)光学与微波:高斯波束。
(4)计算化学:分子轨道。
(5)Hermite多项式:高斯函数在概率论中是微分方程
(
e
−
x
2
2
u
′
)
′
+
λ
e
−
x
2
2
u
)
=
0
(e^{\frac{-x^2}{2}}u')'+\lambda e^{\frac{-x^2}{2}}u)=0
(e2−x2u′)′+λe2−x2u)=0的解,在物理学中是微分方程
u
′
′
−
2
x
u
′
+
2
λ
u
=
0
u''-2xu'+2\lambda u=0
u′′−2xu′+2λu=0的解。
(6)信号处理:分析信号频率,定义高斯滤波器。
(7)图像处理:高斯模糊;去除高斯噪声
(8)机器学习:核函数,相关算法。
(9)金融:模拟股票价格、利率等金融模型。
---------(2025.2.18更新分隔线)
(10)集成电路:互联延迟的分析中,用高斯分布(函数)实现粗糙表面建模或描述。
(11)高斯滤波:作为低通滤波器来应用于芯片表面缺陷检测。
(12)导航:高斯坐标系。高斯概率密度函数形式为一些滤波方法提供理论基础,提高了全球定位系统GPS的球面坐标转换为平面坐标的精度或者鲁棒性。
2.高斯公式应用
高斯公式应用包括但不限于:
(1)数学:计算曲线围成封闭区域面积。
(2)计算机视觉:几何图形面积、曲线长度、图像分割、边缘检测等
(3)电磁学:电场、磁场的通量计算
(4)机械工程:计算压力、温度、流量值等
(5)土木工程:计算不规则形地基承载力等
(6)电子学:电容器、电阻器和变压器的电流和电压计算。
(7)统计与金融:计算正态分布的概率密度函数。
(8)生物医学工程:计算生物学体积,推断人体器官的形状等。
3.斯托克斯公式应用
斯托克斯公式应用包括但不限于:
(1)流体力学:描述圆球颗粒在流体运动所受阻力,分析水流的流动与水力性能,计算飞行器的空气阻力和升力等。
(2)电磁学:将电场和磁场环路积分转化为曲面积分,简化计算过程。
(3)生物医学工程:研究血液流动规律生理机制,推导药物或细胞在血管中的速度等
(4)化学工程与环境科学:研究颗粒在流体中扩散,例如在气体中的扩散速率等。
(5)广义相对论:计算引力场的环路积分。
三、算法例举
1. 高斯模糊 高斯模糊 高斯模糊:利用高斯函数,通过调整标准差 σ \sigma σ来改变图像模糊程度。
2. 支持向量机 支持向量机 支持向量机SVM:处理一些非线性可分问题。
3. 高斯牛顿法 高斯牛顿法 高斯牛顿法:用于解决最小二乘问题的相关算法,通过迭代求解线性方程组来逼近。
4. 高斯回归 高斯回归 高斯回归GPR:最大化边缘似然函数找模型的参数。
5. 高斯积分 高斯积分 高斯积分:通过特定节点和权重在区间上进行近似求和,以达到积分目的。
6. 环流量 环流量 环流量:计算流体在曲面上的通量以及沿着曲面边界的环流量。
7. 飞行器设计 飞行器设计 飞行器设计:航空航天飞行器的气动外形和性能优化。
8. 水流分析 水流分析 水流分析:分析水流速度分布、压力分布以及涡旋结构。