高斯定理与斯托克斯定理

高斯定理(散度定理)

∮ s A ⃗ ⋅ S ⃗ = ∫ v ∇ ⋅ A ⃗ d V \oint_{s}\vec{A}\cdot\vec{S}= \int_{v} \nabla\cdot\vec{A}dV sA S =vA dV
回顾散度定义: ∇ ⋅ A ⃗ = lim ⁡ Δ V → 0 ∫ A ⃗ ⋅ d S ⃗ Δ V \nabla \cdot \vec{A}=\lim_{\Delta V \to 0} \frac{\int \vec{A} \cdot d\vec{S}}{\Delta V} A =limΔV0ΔVA dS ,表示穿过单位体积封闭曲面的通量,利用微元小块内部面相互抵消形象理解该定理

散度对应面积,散度的三维降维成二维

斯托克斯定理(旋度定理)

∮ l A ⃗ ⋅ l ⃗ = ∫ ∇ × A ⃗ ⋅ d S ⃗ \oint_{l}\vec{A} \cdot \vec{l}=\int \nabla \times \vec{A} \cdot d\vec{S} lA l =×A dS
∇ × A ⃗ = lim ⁡ Δ S → 0 ∮ A ⃗ ⋅ d l ⃗ Δ S \nabla \times \vec {A} =\lim_{\Delta S \to 0}\frac{\oint \vec{A} \cdot d \vec{l}}{\Delta S} ×A =limΔS0ΔSA dl

旋度对应线量,也可以整体升维使用,旋度的二维降维成一维

注意斯托克斯定理和高斯定理仅仅表示数值上相等,等式两侧的物理意义是不同的。定义式右边实质上是微分形式,因此定义式两边同时积分可得定理形式

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值