【模型学习-AE】自编码器、AE、AutoEncoder

自编码器是一种无监督学习方法,包含编码器和解码器两部分,用于学习数据的隐层特征并重构原始输入。通过编码器将输入数据映射到低维隐层空间,然后用解码器从隐层空间重构数据。模型通过非线性函数如Sigmoid、ReLU或Tanh进行变换,并使用随机梯度下降优化参数,以最小化重构误差。然而,AE不能生成新数据,仅能重构已有数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自编码器(AutoEncoder,AE)

结构图

image-20230326203307091

原理

  1. AE结构包含两部分:编码器Encoder和解码器Decoder
  2. 原始数据X通过编码器,得到隐层变量Z,Z包含了原始数据X的一些特征
    1. 编码部分将原始数据X从数据空间Rn映射到隐层变量Z所在的隐层空间Rd
  3. 隐层变量Z,通过解码器,得到输出变量X’,即原始数据X的重构
    1. 解码部分将隐层变量Z从隐层空间Rd映射到输出变量X’所在的空间,即原始数据X所在的数据空间Rn

功能

  1. AE可以学习得到原始数据的隐层特征
    1. 如人脸可由如下特征表示:眼睛大小,鼻子高低,嘴唇厚度,胡子长度…
    2. 编码部分任务
  2. AE可以通过学习到的隐层特征,重构原始数据
    1. 如通过人脸的特征,重构得到该张人脸
    2. 解码部分任务

算法实现

  1. 原始数据到隐层特征

h = E n c o d e ( x ) = f e ( W e ⋅ x + b e ) h=Encode\left( x \right) =f_e\left( W_e\cdot x+b_e \right) h=Encode(x)=fe(Wex+be)

  1. 隐层特征到重构输出

x ~ = D e c o d e ( x ) = f d ( W d ⋅ h + b d ) \tilde{x}=Decode\left( x \right) =f_d\left( W_d\cdot h+b_d \right) x~=Decode(x)=fd(Wdh+bd)

公式中的 f_e 和 f_d 函数是常用的非线性函数,如Sigmoid函数、ReLU函数、Tanh函数
  1. 整个模型需要得到最优参数组:

θ ( W e , b e , W d , b d ) \theta \left( W_e, b_e, W_d, b_d \right) θ(We,be,Wd,bd)

  1. 随机梯度下降算法寻找最优参数组

θ k + 1 ( W e , b e , W d , b d ) = θ k ( W e , b e , W d , b d ) − ∂ J ∂ θ J = 1 2 N ∑ i = 1 N ∥ x ~ i − x i ∥ 2 \theta _{k+1}\left( W_e, b_e, W_d, b_d \right) =\theta _k\left( W_e, b_e, W_d, b_d \right) -\frac{\partial J}{\partial \theta} \\ J=\frac{1}{2N}\sum_{i=1}^N{\left\| \tilde{x}_i-x_i \right\| ^2} θk+1(We,be,Wd,bd)=θk(We,be,Wd,bd)θJJ=2N1i=1Nx~ixi2

代码实现

待补充。。。

模型不足

  1. AE模型只能重构已有数据,不能生成数据
  2. 若通过人为给定隐层特征Z,则大概率不能重构目标输出,因为人为给定的Z不满足原始数据学习到的隐层变量Z所遵从的分布
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值