【科研工具】论文绘图方法

文章介绍了用于制作模型图和实验结果图的一些资源和Python库,如Flaticon、Iconfont.cn以及Matplotlib、Seaborn和Plotly,提供了散点图、折线图和柱状图的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

记录下一些好用的工具,方便以后长期使用。
论文中需要的图主要有两种:

  1. 模型图
  2. 实验结果图

模型图

icon
为了使我们的图看起来逼格更高一点,对于模型图中的icon可以使用一些几个网站

  1. https://www.flaticon.com
    pro版本需要充钱,可以使用free版本,只需要涉及版本时归属于原作者就可以了。
    在这里插入图片描述
  2. https://www.iconfont.cn
    适用于大图标中的小图标,风格多样,可选择性多。
    在这里插入图片描述
    有了icon后可以在ppt中画,或者visio。

实验结果图

可以使用python或者matlab。
Python中有许多绘图库可以用来画实验结果图,其中比较流行的有Matplotlib、Seaborn和Plotly等。
代码示例如:

  1. 散点图:
import matplotlib.pyplot as plt
import numpy as np

def print_hi(name):
    # Use a breakpoint in the code line below to debug your script.
    print(f'Hi, {name}')  # Press Ctrl+F8 to toggle the breakpoint.

# Press the green button in the gutter to run the script.
if __name__ == '__main__':
    # 绘制散点图
    plt.scatter(x, y)

    # 添加标题和标签
    # plt.title('实验结果')
    plt.xlabel('x')
    plt.ylabel('y')

    # 显示图像
    plt.show()

在这里插入图片描述
2. 折线图:

 # 折线图
    # 创建一个数据列表
    x = [1, 2, 3, 4, 5]
    y1 = [1, 3, 2, 4, 5]
    y2 = [2, 4, 3, 5, 6]

    # 绘制折线图
    plt.plot(x, y1, label='Line 1')
    plt.plot(x, y2, label='Line 2')

    # 添加图例和坐标轴标签
    plt.legend()
    plt.xlabel('X Label')
    plt.ylabel('Y Label')

    # 显示图形
    plt.show()

在这里插入图片描述

  1. 柱状图:
# 创建数据
    x = np.array(['A', 'B', 'C', 'D', 'E'])
    y1 = np.array([10, 24, 36, 40, 56])
    y2 = np.array([20, 28, 30, 45, 58])

    # 绘制柱状图
    fig, ax = plt.subplots()
    ax.bar(x, y1, label='Bar 1')
    ax.bar(x, y2, bottom=y1, label='Bar 2')

    # 添加图例和坐标轴标签
    ax.legend()
    ax.set_xlabel('X Label')
    ax.set_ylabel('Y Label')

    # 显示图形
    plt.show()

在这里插入图片描述
可以根据自己的需求进一步设计配色、样式。

### 绘制卷积神经网络(CNN)模型结构图的方法 绘制卷积神经网络(CNN)模型结构图对于理解其架构至关重要。以下是几种常用方法来创建这些图表: #### 使用Python库自动绘图 许多深度学习框架提供了内置功能或第三方工具用于可视化CNN架构。 - **TensorFlow/Keras** 用户可以利用 `plot_model` 方法来自动生成模型结构图[^2]。 ```python import tensorflow as tf from tensorflow.keras.utils import plot_model model = ... # 定义好自己的CNN模型 plot_model(model, to_file='model.png', show_shapes=True, show_layer_names=True) ``` 此代码片段将会保存一张PNG图片文件,其中包含了所定义的CNN模型每一层的信息以及各层之间的连接关系。 #### 手动设计图形表示法 当需要更加定制化的展示时,则可能要手动制作结构图。这通常涉及到以下几个方面: - **节点形状**: 圆形代表输入/输出张量;矩形用来描绘不同类型的处理单元如卷积层、激活函数等; - **标注文字说明**: 在每一块区域内注明具体操作名称(例如 Conv2D(3x3), MaxPooling2D 等),并附上相应参数设置情况。 为了简化这一过程,还可以借助专门的设计软件像 Microsoft Visio 或者在线平台 draw.io 来快速搭建出清晰易懂的网络拓扑视图。 #### 利用LaTeX中的TikZ包绘制复杂结构 对于科研论文写作而言,采用 LaTeX 编辑器配合 TikZ 图表宏包也是一种不错的选择。通过编写特定语法命令能够精确控制每一个细节位置和样式效果。 ```latex \documentclass{article} \usepackage{tikz} % Define block styles \tikzstyle{input}=[circle,draw] \tikzstyle{conv}=[rectangle,draw] \begin{document} \begin{figure}[h!] \centering \begin{tikzpicture} % Place nodes \node [input] (in1) at (-4,0) {Input}; \node [conv] (conv1) at (-2,-1) {$Conv$}; % Draw edges \path [-stealth] (in1.east) edge node {} (conv1.west); % Add more layers... \end{tikzpicture} \caption{A simple CNN architecture diagram.} \end{figure} \end{document} ``` 这段简单的例子展示了如何使用TikZ画出基本的两层网络布局,实际应用中可以根据需求扩展更多层次与分支路径[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值