拉格朗日乘数法整理

拉格朗日乘数法

一种不直接依赖消元法求解条件极值问题的有效方法

二元函数入手

我们从 f , φ f, \varphi f,φ皆为二元函数这一简单情况人手. 欲求函数

z = f ( x , y ) z=f(x, y) z=f(x,y)

的极值,其中 ( x , y ) ( x,y) (x,y)受条件

C : φ ( x , y ) = 0 C: \varphi(x, y)=0 C:φ(x,y)=0

的限制. 若把条件 C C C 看作 ( x , y ) (x, y) (x,y) 所满足的曲线方程,并设 C C C上的点 P 0 ( x 0 , y 0 ) 为 f P_{0}\left(x_{0}, y_{0}\right) 为 f P0(x0,y0)f在条件 C C C下的极值点,且在点 P 0 P_{0} P0的某邻城上方程 C C C能惟一确定可微的隐函数 y = g ( x ) , 则 x = x 0 y=g(x), 则 x=x_{0} y=g(x),x=x0必定也是 z = f ( x , g ( x ) ) = h ( x ) z=f(x, g(x))=h(x) z=f(x,g(x))=h(x)的极值点. 故由 f f f P 0 P_{0} P0 可微, g g g x 0 x _{0} x0可微,得到

h ′ ( x 0 ) = f x ( x 0 , y 0 ) + f y ( x 0 , y 0 ) g ′ ( x 0 ) = 0 h^{\prime}\left(x_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)+f_{y}\left(x_{0}, y_{0}\right) g^{\prime}\left(x_{0}\right)=0 h(x0)=fx(x0,y0)+fy(x0,y0)g(x0)=0

而当 φ \varphi φ满足隐函数定理条件时

g ′ ( x 0 ) = − φ x ( x 0 , y 0 ) φ y ( x 0 , y 0 ) g ^{\prime}\left(x_{0}\right)=-\frac{\varphi_{x}\left(x_{0}, y_{0}\right)}{\varphi_{y}\left(x_{0}, y_{0}\right)} g(x0)=φy(x0,y0)φx(x0,y0)

g ′ g ^{\prime} g代人 h ′ h ^{\prime} h后又得到

f x ( P 0 ) φ y ( P 0 ) − f y ( P 0 ) φ x ( P 0 ) = 0 f_{x}\left(P_{0}\right) \varphi_{y}\left(P_{0}\right)-f_{y}\left(P_{0}\right) \varphi_{x}\left(P_{0}\right)=0 fx(P0)φy(P0)fy(P0)φx(P0)=0

在几何意义上,上式表示曲面 z = f ( x , y ) z=f(x, y) z=f(x,y) 的等高线 f ( x , y ) = f ( P 0 ) f(x, y)=f\left(P_{0}\right) f(x,y)=f(P0) 与曲线 C C C P 0 P_{0} P0处具有公共切线,从而存在某一常数 λ 0 \lambda_{0} λ0,使得在 P 0 P_{0} P0处满足

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值