积分学<6>——反常积分

本文介绍了反常积分的两种推广情况:一是定义域无界的积分,二是值域无界的积分。文章详细阐述了这两种情况下函数的定义、积分的构造以及收敛性的条件。
摘要由CSDN通过智能技术生成

反常积分的推广

从定积分到反常积分的推广

定义6.1 反常积分(定义域无界)

若函数 f ( x ) f\left ( x \right ) f(x)在区间 [ a , + ∞ ) \left [ a,+\infty \right) [a,+)( a ∈ R a \in \mathbb{R} aR)上有定义,且 ∀ A > a \forall A > a A>a,
若函数 f ( x ) f\left ( x \right ) f(x) [ a . A ] \left [ a.A \right ] [a.A]上可积,
构造变上限积分 F ( A ) = ∫ a A f ( x ) d x F\left ( A \right ) =\int_{a}^{A} f\left ( x \right )dx F(A)=aAf(x)dx,
若极限 lim ⁡ A → + ∞ F ( A ) = lim ⁡ A → + ∞ ( ∫ a A f ( x ) d x ) = F ( + ∞ ) − F ( a ) \lim _{A\to +\infty }F\left ( A \right ) = \lim _{A\to +\infty }\left ( \int_{a}^{A} f\left ( x \right )dx \right )=F\left ( +\infty \right )-F\left ( a \right ) limA+F(A)=limA+(aAf(x)dx)=F(+)F(a)存在且有限,则称反常积分 ∫ a + ∞ f ( x ) d x = lim ⁡ A → + ∞ ( ∫ a A f ( x ) d x ) \int_{a}^{+\infty } f\left ( x \right ) dx=\lim _{A\to +\infty }\left ( \int_{a}^{A} f\left ( x \right )dx \right ) a+f(x)dx=limA+(aAf(x)dx)收敛。

定义6.2 反常积分(值域无界)

若函数 f ( x ) f\left ( x \right ) f(x)在区间 [ a , b ) \left [ a, b \right) [a,b)( a , b ∈ R a ,b \in \mathbb{R} a,bR)上有定义,且闭区间 [ a , b ] \left [ a, b \right] [a,b]上有且只有一个奇点 b b b,使得函数 f ( x ) f\left ( x \right ) f(x)在奇点 b b b的任意邻域内无界, ∀ η ∈ ( a , b ) \forall \eta \in \left ( a,b \right ) η(a,b),
若函数 f ( x ) f\left ( x \right ) f(x) [ a , b − η ] \left [ a,b-\eta \right ] [a,bη]上可积,
构造变上限积分 F ( η ) = ∫ a b − η f ( x ) d x F\left ( \eta \right ) =\int_{a}^{b-\eta } f\left ( x \right )dx F(η)=abηf(x)dx,
若极限 lim ⁡ η → 0 + F ( η ) = lim ⁡ η → 0 + ( ∫ a b − η f ( x ) d x ) = F ( b − ) − F ( a ) \lim _{\eta \to 0^{+} }F\left ( \eta \right ) = \lim _{\eta \to 0^{+} }\left ( \int_{a}^{b-\eta } f\left ( x \right )dx \right )=F\left (b- \right )-F\left ( a \right ) limη0+F(η)=limη0+(abηf(x)dx)=F(b)F(a)存在且有限,
则称反常积分 ∫ a b f ( x ) d x = lim ⁡ η → 0 + ( ∫ a b − η f ( x ) d x ) \int_{a}^{b } f\left ( x \right ) dx=\lim _{\eta \to 0^{+} }\left ( \int_{a}^{b-\eta} f\left ( x \right )dx \right ) abf(x)dx=limη0+(abηf(x)dx)收敛。

反常积分的收敛判别法

定义6.3 Cauchy主值

若极限 lim ⁡ A → + ∞ ∫ − A A f ( x ) d x \lim _{A\to +\infty } \int _{-A} ^{A} f\left ( x \right )dx limA+AAf(x)dx存在,则称其为反常积分 ∫ − ∞ ∞ f ( x ) d x \int _{-\infty} ^{\infty} f\left ( x \right )dx f(x)dx的Cauchy主值。

定义6.4 绝对(条件)收敛

若反常积分 ∫ a + ∞ ∣ f ( x ) ∣ d x \int _{a}^{+\infty } \left | f\left ( x \right ) \right |dx a+f(x)dx收敛,则称反常积分 ∫ a + ∞ f ( x ) d x \int _{a}^{+\infty } f\left ( x \right ) dx a+f(x)dx绝对收敛,若 ∫ a + ∞ f ( x ) d x \int _{a}^{+\infty } f\left ( x \right ) dx a+f(x)dx绝对收敛,则 ∫ a + ∞ f ( x ) d x \int _{a}^{+\infty } f\left ( x \right ) dx a+f(x)dx一定收敛,对应的逆命题则不成立,将反常积分 ∫ a + ∞ f ( x ) d x \int _{a}^{+\infty } f\left ( x \right ) dx a+f(x)dx绝对收敛而发散的情形称为反常积分 ∫ a + ∞ f ( x ) d x \int _{a}^{+\infty } f\left ( x \right ) dx a+f(x)dx条件收敛。

定理6.1 比较判别法

若在无界区间 [ a , + ∞ ) \left [ a,+\infty \right ) [a,+)上, f ( x ) ≤ k φ ( x ) f\left ( x \right )\le k\varphi \left ( x \right ) f(x)kφ(x)( k > 0 k>0 k>0),则有如下判定:
(1) k ∫ a + ∞ φ ( x ) d x k\int _{a}^{+ \infty }\varphi \left ( x \right )dx ka+φ(x)dx收敛,则 ∫ a + ∞ ( x ) d x \int _{a}^{+ \infty } \left ( x \right )dx a+(x)dx收敛;
(2) ∫ a + ∞ ( x ) d x \int _{a}^{+ \infty } \left ( x \right )dx a+(x)dx发散,则 k ∫ a + ∞ φ ( x ) d x k\int _{a}^{+ \infty }\varphi \left ( x \right )dx ka+φ(x)dx发散。
极限形式为:
f ( x ) > 0 f\left ( x \right )>0 f(x)>0, g ( x ) > 0 g\left ( x \right ) >0 g(x)>0, lim ⁡ x → + ∞ f ( x ) g ( x ) = l \lim _{x\to +\infty }\frac{f\left ( x \right ) }{g\left ( x \right ) }=l limx+g(x)f(x)=l,
(1)若 l ∈ [ 0 , + ∞ ) l\in \left [ 0,+\infty \right ) l[0,+), k ∫ a + ∞ φ ( x ) d x k\int _{a}^{+ \infty }\varphi \left ( x \right )dx ka+φ(x)dx收敛,则 ∫ a + ∞ ( x ) d x \int _{a}^{+ \infty } \left ( x \right )dx a+(x)dx收敛;
(2)若 l ∈ ( 0 , + ∞ ] l\in \left ( 0,+\infty \right ] l(0,+], ∫ a + ∞ ( x ) d x \int _{a}^{+ \infty } \left ( x \right )dx a+(x)dx发散,则 k ∫ a + ∞ φ ( x ) d x k\int _{a}^{+ \infty }\varphi \left ( x \right )dx ka+φ(x)dx发散。

定理6.2 Cauchy判别法

f ( x ) ≥ 0 f\left ( x \right )\ge 0 f(x)0,
(1)若 f ( x ) ≤ k x p f\left ( x \right ) \le \frac{k}{x^{p} } f(x)xpk, p > 1 p>1 p>1,则 ∫ a + ∞ f ( x ) d x \int _{a}^{+\infty }f\left ( x \right )dx a+f(x)dx收敛;
(2)若 f ( x ) ≥ k x p f\left ( x \right ) \ge \frac{k}{x^{p} } f(x)xpk, p ≤ 1 p\le 1 p1,则 ∫ a + ∞ f ( x ) d x \int _{a}^{+\infty }f\left ( x \right )dx a+f(x)dx发散。
(3)若 f ( x ) ≤ k ( b − x ) p f\left ( x \right ) \le \frac{k}{\left ( b-x \right )^{p} } f(x)(bx)pk, p < 1 p<1 p<1,则 ∫ a + ∞ f ( x ) d x \int _{a}^{+\infty }f\left ( x \right )dx a+f(x)dx收敛;
(4)若 f ( x ) ≥ k ( b − x ) p f\left ( x \right ) \ge \frac{k}{\left ( b-x \right )^{p} } f(x)(bx)pk, p ≥ 1 p\ge 1 p1,则 ∫ a + ∞ f ( x ) d x \int _{a}^{+\infty }f\left ( x \right )dx a+f(x)dx发散。

定理6.3 Abel-Dirichlet判别法

(1)反常积分 ∫ a + ∞ f ( x ) d x \int_{a}^{+\infty } f\left ( x \right )dx a+f(x)dx收敛,函数 g ( x ) g\left ( x \right ) g(x)有界;
(2)定积分 F ( A ) = ∫ a A f ( x ) d x F\left ( A \right )=\int_{a}^{A}f\left ( x \right )dx F(A)=aAf(x)dx有界,函数 g ( x ) g\left ( x \right ) g(x)单调且 lim ⁡ x → + ∞ g ( x ) = 0 \lim _{x\to +\infty } g\left ( x \right )=0 limx+g(x)=0
(3)反常积分 ∫ a b f ( x ) d x \int_{a}^{b} f\left ( x \right )dx abf(x)dx( b b b为奇点)收敛,函数 g ( x ) g\left ( x \right ) g(x)单调有界;
(4)定积分 F ( η ) = ∫ a b − η f ( x ) d x F\left ( \eta \right )=\int_{a}^{b-\eta}f\left ( x \right )dx F(η)=abηf(x)dx有界,函数 g ( x ) g\left ( x \right ) g(x)单调且 lim ⁡ x → b − g ( x ) = 0 \lim _{x\to b^{-} } g\left ( x \right )=0 limxbg(x)=0

积分第二中值定理

定理6.4 积分第二中值定理

函数 f ( x ) f\left ( x \right ) f(x) [ a , b ] \left [ a,b \right ] [a,b]可积,函数 g ( x ) g\left ( x \right ) g(x) [ a , b ] \left [ a,b \right ] [a,b]单调,则 ∫ a b f ( x ) g ( x ) d x = g ( a ) ∫ a ξ f ( x ) d x + g ( b ) ∫ ξ b f ( x ) d x \int_{a}^{b}f\left ( x \right ) g\left ( x \right )dx=g\left ( a \right )\int_{a}^{\xi }f\left ( x \right ) dx+g\left ( b \right )\int_{\xi }^{ b}f\left ( x \right ) dx abf(x)g(x)dx=g(a)aξf(x)dx+g(b)ξbf(x)dx( ξ ∈ [ a , b ] \xi \in \left [ a,b \right ] ξ[a,b])。

  • 24
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值