函数极限<5>——闭区间上的连续函数

闭区间上的连续函数

闭区间上的连续函数的性质

定理5.1 有界定理

函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续,则函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上有界。

反证法,设函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上无界。
将区间 [ a , b ] ( i ∈ N ) \left [ a,b \right ](i \in \mathbb{N} ) [a,b](iN)分为 [ a , a + b 2 ] \left [ a,\frac{a+b }{2} \right ] [a,2a+b] [ a + b 2 , b ] \left [ \frac{a+b }{2},b \right ] [2a+b,b],则 f ( x ) f\left ( x \right ) f(x)至少在其中一个区间上无界,选择无界区间并标记为 [ a 1 , b 1 ] \left [ a_{1},b_{1} \right ] [a1,b1],
以此类推,循环以下流程:

  1. 将区间 [ a n , b n ] ( n ∈ N + ) \left [ a_{n},b_{n} \right ](n \in \mathbb{N}^{+} ) [an,bn](nN+)二等分为 [ a n , a n + b n 2 ] \left [ a_{n},\frac{a_{n}+b_{n} }{2} \right ] [an,2an+bn] [ a n + b n 2 , b n ] \left [ \frac{a_{n}+b_{n} }{2},b_{n} \right ] [2an+bn,bn];
  2. f ( x ) f\left ( x \right ) f(x)至少在其中一个区间上无界,选择无界区间并标记为 [ a n + 1 , b n + 1 ] \left [ a_{n+1},b_{n+1} \right ] [an+1,bn+1]

由闭区间套定理,闭区间套 { [ a n , b n ] } \left \{ \left [ a_{n},b_{n} \right ] \right \} {[an,bn]}中有唯一的 ξ ∈ R \xi \in \mathbb{R} ξR存在于每个闭区间 [ a n , b n ] \left [ a_{n},b_{n} \right ] [an,bn],
因为函数 f ( x ) f \left ( x \right ) f(x) ξ ∈ [ a , b ] \xi \in \left [ a,b \right ] ξ[a,b]处连续,所以 lim ⁡ x → ξ f ( x ) \lim_{x \to \xi } f\left ( x \right ) limxξf(x)存在,
由函数极限的局部有界性, f ( x ) f\left ( x \right ) f(x)在区间 [ a , b ] ∪ U ( ξ , δ ) \left [ a,b \right ]\cup U \left ( \xi,\delta \right ) [a,b]U(ξ,δ)内有界,
n → ∞ n\to \infty n,则当 n n n充分大时, [ a n , b n ] \left [ a_{n} ,b_{n} \right ] [an,bn]以及其后构造的闭区间都包含于 [ a , b ] ∪ U ( ξ , δ ) \left [ a,b \right ]\cup U \left ( \xi,\delta \right ) [a,b]U(ξ,δ)内, f ( x ) f\left ( x \right ) f(x)在区间 [ a , b ] ∪ U ( ξ , δ ) \left [ a,b \right ]\cup U \left ( \xi,\delta \right ) [a,b]U(ξ,δ)的子区间 [ a n , b n ] \left [ a_{n} ,b_{n} \right ] [an,bn]内无界,这与函数 f ( x ) f \left ( x \right ) f(x) [ a , b ] ∪ U ( ξ , δ ) \left [ a,b \right ]\cup U \left ( \xi,\delta \right ) [a,b]U(ξ,δ)内有界矛盾。

定理5.2 最值定理

f ( x ) f\left ( x \right ) f(x) [ a , b ] \left [ a,b \right ] [a,b]上连续,则 f ( x ) f\left ( x \right ) f(x) [ a , b ] \left [ a,b \right ] [a,b]上必有最大值 M M M和最小值 m m m,也就是 ∃ ξ \exists \xi ξ, η ∈ [ a , b ] \eta \in \left [ a,b \right ] η[a,b]: ∀ x ∈ [ a , b ] \forall x\in \left [ a,b \right ] x[a,b], f ( ξ ) = m = min ⁡ f ( x ) f\left ( \xi \right )=m= \min f\left ( x \right ) f(ξ)=m=minf(x), f ( η ) = M = max ⁡ f ( x ) f\left ( \eta \right )=M=\max f\left ( x \right ) f(η)=M=maxf(x)

f ( x ) f\left ( x \right ) f(x)的值域为 R f R_{f} Rf, R f R_{f} Rf中任取数列 x n x_{n} xn,
因为 f ( x ) f\left ( x \right ) f(x) [ a , b ] \left [ a,b \right ] [a,b]上连续,所以根据有界定理,值域 R f R_{f} Rf有界,
又根据确界存在原理, R f R_{f} Rf有下确界 α = inf ⁡ R f \alpha =\inf R_{f} α=infRf,上确界 β = sup ⁡ R f \beta =\sup R_{f} β=supRf,
以上确界 β = sup ⁡ R f \beta =\sup R_{f} β=supRf为典型,
取无穷小量数量数列 ε n > 0 \varepsilon_{n} > 0 εn>0,根据上确界的定义,对所有 n n n,均有 β − ε n < f ( x n ) ≤ β \beta -\varepsilon_{n} <f\left (x_{n}\right )\le \beta βεn<f(xn)β,
引用Bolzano-Weierstrass定理, x n ∈ [ a , b ] x_{n} \in \left [ a,b \right ] xn[a,b]必有收敛子列 { x n k } \left \{ x_{n_{k} } \right \} {xnk}, ε n \varepsilon_{n} εn也必有收敛于0的子列 { ε n k } > 0 \left \{ \varepsilon _{n_{k} } \right \}>0 {εnk}>0,满足 β − ε n k < f ( x n k ) ≤ β \beta -\varepsilon _{n_{k} }< f\left ( x_{n_{k}}\right )\le \beta βεnk<f(xnk)β,
k → ∞ k\to \infty k,设 lim ⁡ k → ∞ x n k = ξ ∈ [ a , b ] \lim _{k\to \infty } x_{n_{k}} = \xi \in \left [ a,b \right ] limkxnk=ξ[a,b],
根据数列极限的局部保不等号性(数列极限保序性的逆命题), β − 0 = β ≤ lim ⁡ x n k → ξ f ( x n k ) ≤ β ⇔ lim ⁡ x n k → ξ f ( x n k ) = β \beta -0=\beta \le \lim _{x_{n_{k}} \to \xi } f\left (x_{n_{k}}\right ) \le \beta \Leftrightarrow \lim _{x_{n_{k}} \to \xi } f\left (x_{n_{k}}\right ) = \beta β0=βlimxnkξf(xnk)βlimxnkξf(xnk)=β,
根据连续函数定义, lim ⁡ x n k → ξ f ( x n k ) = f ( ξ ) = β \lim _{x_{n_{k}} \to \xi } f\left ( x_{n_{k}}\right ) =f\left ( \xi \right )=\beta limxnkξf(xnk)=f(ξ)=β,
由此, ∃ ξ ∈ [ a , b ] \exists \xi \in \left [ a,b \right ] ξ[a,b]: ∀ x ∈ [ a , b ] \forall x\in \left [ a,b \right ] x[a,b], f ( x ) ≥ f ( ξ ) f\left ( x \right )\ge f\left ( \xi \right ) f(x)f(ξ),
同理可得 ∃ η ∈ [ a , b ] \exists \eta \in \left [ a,b \right ] η[a,b]: ∀ x ∈ [ a , b ] \forall x\in \left [ a,b \right ] x[a,b], f ( x ) ≤ f ( η ) f\left ( x \right )\le f\left ( \eta \right ) f(x)f(η)

定理5.3 零点存在定理

f ( x ) f\left ( x \right ) f(x) [ a , b ] \left [ a,b \right ] [a,b]上连续,且 f ( a ) f ( b ) < 0 f\left ( a \right )f\left ( b \right )<0 f(a)f(b)<0,则 ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ξ(a,b): f ( ξ ) = 0 f\left ( \xi \right )=0 f(ξ)=0

f ( x ) f\left ( x \right ) f(x) [ a 0 , b 0 ] \left [ a_{0},b_{0} \right ] [a0,b0]上连续,不妨设 f ( a 0 ) > 0 f\left ( a_{0} \right ) >0 f(a0)>0, f ( b 0 ) < 0 f\left ( b_{0} \right ) <0 f(b0)<0,
循环以下流程:

  1. 将区间 [ a n , b n ] ( i ∈ N + ) \left [ a_{n},b_{n} \right ](i \in \mathbb{N}^{+} ) [an,bn](iN+)二等分为 [ a n , a n + b n 2 ] \left [ a_{n},\frac{a_{n}+b_{n} }{2} \right ] [an,2an+bn] [ a n + b n 2 , b n ] \left [ \frac{a_{n}+b_{n} }{2},b_{n} \right ] [2an+bn,bn];
  2. 进行如下判定:
    1. a n + b n 2 < 0 \frac{a_{n}+b_{n} }{2}<0 2an+bn<0,选取 [ a n , a n + b n 2 ] \left [ a_{n},\frac{a_{n}+b_{n} }{2} \right ] [an,2an+bn]作为下一次循环的 [ a n + 1 , b n + 1 ] \left [ a_{n+1},b_{n+1} \right ] [an+1,bn+1];
    2. a n + b n 2 > 0 \frac{a_{n}+b_{n} }{2}>0 2an+bn>0,选取 [ a n + b n 2 , b n ] \left [ \frac{a_{n}+b_{n} }{2},b_{n} \right ] [2an+bn,bn]作为下一次循环的 [ a n + 1 , b n + 1 ] \left [ a_{n+1},b_{n+1} \right ] [an+1,bn+1];
    3. a n + b n 2 = 0 \frac{a_{n}+b_{n} }{2}=0 2an+bn=0, ξ = a n + b n 2 \xi=\frac{a_{n}+b_{n} }{2} ξ=2an+bn f ( x ) f\left ( x \right ) f(x)的零点。
  3. 循环上述流程。

可由此构造闭区间套 { [ a n , b n ] ∣ f ( a n ) > 0 > f ( b n ) } \left \{ \left [ a_{n},b_{n} \right ]|f\left ( a_{n} \right )>0>f\left ( b_{n} \right ) \right \} {[an,bn]f(an)>0>f(bn)}
由闭区间套定理, ∃ ξ : ∀ n , ξ ∈ ⋂ n = 0 ∞ [ a n , b n ] \exists \xi:\forall n,\xi \in \bigcap_{n=0}^{\infty }\left [ a_{n},b_{n} \right ] ξ:n,ξn=0[an,bn],且 lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = ξ \lim_{n \to \infty} a_{n}=\lim_{n \to \infty} b_{n}=\xi limnan=limnbn=ξ,
由Heine定理,因为 lim ⁡ x → ξ f ( x ) = f ( ξ ) \lim _{x\to \xi }f\left ( x \right ) =f\left ( \xi \right ) limxξf(x)=f(ξ),所以对任意满足 x n ≠ ξ x_{n} \ne \xi xn=ξ, lim ⁡ n → ∞ x n = ξ \lim_{n \to \infty} x_{n}=\xi limnxn=ξ条件的数列 { x n } \left \{ x_{n} \right \} {xn},都有 lim ⁡ n → ∞ f ( x n ) = f ( ξ ) \lim_{n \to \infty}f\left ( x_{n} \right )=f\left ( \xi \right ) limnf(xn)=f(ξ),
因为 f ( x ) f\left ( x \right ) f(x)在闭区间套 { [ a n , b n ] ∣ f ( a n ) > 0 > f ( b n ) } \left \{ \left [ a_{n},b_{n} \right ]|f\left ( a_{n} \right )>0>f\left ( b_{n} \right ) \right \} {[an,bn]f(an)>0>f(bn)}中的每个闭区间 [ a n , b n ] \left [ a_{n},b_{n} \right ] [an,bn]上连续,且所以当 n n n充分大时, lim ⁡ n → ∞ f ( a n ) = f ( ξ ) \lim_{n \to \infty } f\left ( a_{n} \right ) =f\left ( \xi \right ) limnf(an)=f(ξ),
同理可得, lim ⁡ n → ∞ f ( b n ) = f ( ξ ) \lim_{n \to \infty } f\left ( b_{n} \right ) =f\left ( \xi \right ) limnf(bn)=f(ξ),
根据函数极限的保号性, 0 ≤ lim ⁡ n → ∞ f ( a n ) = f ( ξ ) = lim ⁡ n → ∞ f ( b n ) ≤ 0 ⇔ f ( ξ ) = 0 0\le \lim_{n \to \infty} f\left ( a_{n} \right )=f\left ( \xi \right ) =\lim_{n \to \infty} f\left ( b_{n} \right ) \le 0\Leftrightarrow f\left ( \xi \right )=0 0limnf(an)=f(ξ)=limnf(bn)0f(ξ)=0

定理5.4 介值定理

f ( x ) f\left ( x \right ) f(x) [ a , b ] \left [ a,b \right ] [a,b]上连续,且 m ≤ f ( x ) ≤ M ( m , M ∈ R ) m\le f\left ( x \right ) \le M(m,M\in \mathbb{R} ) mf(x)M(m,MR),则 f ( x ) f\left ( x \right ) f(x)可取到最小值 m m m与最大值 M M M之间的任何值。

由最值定理, ∃ ξ \exists \xi ξ, η ∈ [ a , b ] \eta \in \left [ a,b \right ] η[a,b]: f ( ξ ) = m = min ⁡ f ( x ) f\left ( \xi \right )=m=\min f\left ( x \right ) f(ξ)=m=minf(x), f ( η ) = M = max ⁡ f ( x ) f\left ( \eta \right )=M=\max f\left ( x \right ) f(η)=M=maxf(x),
不妨设 ξ < η \xi <\eta ξ<η,
任取 k ∈ ( m , M ) k \in \left ( m ,M \right ) k(m,M),设 g ( x ) = f ( x ) − k g\left ( x \right )=f\left ( x \right )-k g(x)=f(x)k,则有 g ( ξ ) < 0 g\left ( \xi \right )<0 g(ξ)<0, g ( η ) > 0 g\left ( \eta \right )>0 g(η)>0,
由零点存在定理, ∃ γ ∈ ( ξ , η ) \exists \gamma \in \left ( \xi ,\eta \right ) γ(ξ,η): g ( γ ) = 0 ⇔ f ( γ ) = k ∈ ( m , M ) g\left ( \gamma \right )=0\Leftrightarrow f\left ( \gamma \right ) =k\in \left ( m,M \right ) g(γ)=0f(γ)=k(m,M)

一致连续

定义5.1 一致连续

若函数 f ( x ) f\left ( x \right ) f(x)在区间 X X X上有定义,且 ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ x ′ \forall x^{\prime} x, x ′ ′ x^{\prime\prime } x′′, ∣ x ′ − x ′ ′ ∣ < δ \left | x^{\prime}-x^{\prime\prime } \right |<\delta xx′′<δ, ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < ε \left | f\left ( x ^{\prime }\right )- f\left ( x^{\prime \prime } \right ) \right |<\varepsilon f(x)f(x′′)<ε,则称函数 f ( x ) f\left ( x \right ) f(x)在区间 X X X上一致连续。

定理5.5

f ( x ) f\left ( x \right ) f(x)在区间 X X X上连续,则设 f ( x ) f\left ( x \right ) f(x)在区间 X X X上一致连续的充要条件为:对任意区间 X X X上的数列 { x n ′ } \left \{ x_{n} ^{\prime }\right \} {xn}, { x n ′ ′ } \left \{ x_{n} ^{\prime \prime } \right \} {xn′′},有 lim ⁡ n → ∞ ( x n ′ − x n ′ ′ ) = 0 ⇒ lim ⁡ n → ∞ ( f ( x n ′ ) − f ( x n ′ ′ ) ) = 0 \lim _{n\to \infty }\left ( x_{n}^{\prime} -x_{n} ^{\prime \prime } \right )=0\Rightarrow \lim _{n\to \infty }\left (f \left ( x_{n} ^{\prime }\right ) -f\left ( x_{n} ^{\prime \prime } \right ) \right )=0 limn(xnxn′′)=0limn(f(xn)f(xn′′))=0

<1>必要性
根据数列极限定义, ∀ δ > 0 \forall \delta >0 δ>0, ∃ N \exists N N: ∀ n > N \forall n>N n>N, ∣ x n ′ − x n ′ ′ ∣ < δ \left | x_{n}^{\prime} -x_{n} ^{\prime \prime } \right |< \delta xnxn′′<δ,
又根据函数一致连续定义, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 ( ∣ x n ′ − x n ′ ′ ∣ < δ ) \exists \delta >0 \left ( \left |x_{n}^{\prime} -x_{n} ^{\prime \prime } \right | <\delta\right ) δ>0(xnxn′′<δ): ∣ f ( x n ′ ) − f ( x n ′ ′ ) ∣ < ε \left | f \left ( x_{n} ^{\prime }\right ) -f\left ( x_{n} ^{\prime \prime } \right ) \right |<\varepsilon f(xn)f(xn′′)<ε
<2>充分性
构造逆否命题:
( p → q ) ⇔ ( ¬ q → ¬ p ) p : ∀ { x n ′ } , { x n ′ ′ } ∈ X , lim ⁡ n → ∞ ( x n ′ − x n ′ ′ ) = 0 → lim ⁡ n → ∞ ( f ( x n ′ ) − f ( x n ′ ′ ) ) = 0 ¬ p : ∃ { x n ′ } , { x n ′ ′ } ∈ X : lim ⁡ n → ∞ ( x n ′ − x n ′ ′ ) = 0 ↛ lim ⁡ n → ∞ ( f ( x n ′ ) − f ( x n ′ ′ ) ) = 0 q : f ( x ) 在区间 X 上一致连续 ¬ q : f ( x ) 在区间 X 上非一致连续 \begin{array}{l} &&\left ( p\to q \right ) \Leftrightarrow \left ( \neg q\to \neg p \right ) \\ p&:& \forall \left \{ x_{n} ^{\prime }\right \},\left \{ x_{n} ^{\prime \prime } \right \}\in X,\lim _{n\to \infty }\left ( x_{n}^{\prime} -x_{n} ^{\prime \prime } \right )=0 \to \lim _{n\to \infty }\left (f \left ( x_{n} ^{\prime }\right ) -f\left ( x_{n} ^{\prime \prime } \right ) \right )=0 \\ \neg p&:&\exists \left \{ x_{n} ^{\prime }\right \},\left \{ x_{n} ^{\prime \prime } \right \}\in X:\lim _{n\to \infty }\left ( x_{n} ^{\prime} -x_{n} ^{\prime \prime } \right )=0 \not \to \lim _{n\to \infty }\left (f \left ( x_{n} ^{\prime }\right ) -f\left ( x_{n} ^{\prime \prime } \right ) \right )=0\\ q&:&f\left ( x \right )在区间X上一致连续\\ \neg q&:&f\left ( x \right )在区间X上非一致连续\\ \end{array} p¬pq¬q::::(pq)(¬q¬p){xn},{xn′′}X,limn(xnxn′′)=0limn(f(xn)f(xn′′))=0{xn},{xn′′}X:limn(xnxn′′)=0limn(f(xn)f(xn′′))=0f(x)在区间X上一致连续f(x)在区间X上非一致连续
而对逆否命题 ¬ q → ¬ p \neg q\to \neg p ¬q¬p可以通过构造无穷小量数列 δ n = 1 n \delta _{n} =\frac{1}{n} δn=n1证明。

定理5.6 Cantor定理

函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续,则函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上一致连续。

反证法,设函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续,但是函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上非一致连续。
根据一致连续函数的定义, ∃ x n ′ , x n ′ ′ ∈ [ a , b ] : ∀ ε 0 > 0 \exists x_{n}^{\prime} ,x_{n} ^{\prime \prime }\in \left [ a,b \right ]:\forall \varepsilon_{0} >0 xn,xn′′[a,b]:ε0>0, ∣ x n ′ − x n ′ ′ ∣ < δ = 1 n \left | x_{n}^{\prime} -x_{n}^{ \prime \prime } \right |< \delta=\frac{1}{n} xnxn′′<δ=n1, ∣ f ( x n ′ ) − f ( x n ′ ′ ) ∣ ≥ ε 0 \left | f\left ( x_{n}^{\prime } \right ) -f\left ( x_{n}^{\prime \prime } \right ) \right |\ge \varepsilon_{0} f(xn)f(xn′′)ε0
引用列紧性定理,有界数列 { x n ′ } \left \{ x_{n} ^{\prime } \right \} {xn}必有收敛子列 { x n k ′ } \left \{ x^{\prime} _{n_{k} } \right \} {xnk},
lim ⁡ k → ∞ x n k ′ = ξ ∈ [ a , b ] \lim_{k \to \infty}x_{n_{k} }^{\prime } =\xi \in \left [ a,b \right ] limkxnk=ξ[a,b],
又由 ∣ x n k ′ − x n k ′ ′ ∣ < δ k = 1 n k \left | x_{n_{k}}^{\prime} -x_{n_{k}}^{\prime \prime } \right |< \delta_{k}=\frac{1}{n_{k}} xnkxnk′′ <δk=nk1可知 lim ⁡ k → ∞ ( x n k ′ − x n k ′ ′ ) = 0 \lim _{k\to \infty } \left ( x_{n_{k}}^{\prime} -x_{n_{k}}^{\prime \prime } \right )=0 limk(xnkxnk′′)=0,所以 lim ⁡ k → ∞ x n k ′ ′ = ξ \lim _{k\to \infty } x_{n_{k}}^{\prime \prime }=\xi limkxnk′′=ξ,
根据连续函数的定义, lim ⁡ k → ∞ f ( x n k ′ ) = lim ⁡ k → ∞ f ( x n k ′ ′ ) = f ( ξ ) \lim _{k\to \infty } f\left ( x_{n_{k}}^{\prime } \right )= \lim _{k\to \infty } f\left ( x_{n_{k}}^{\prime \prime } \right )=f\left ( \xi \right ) limkf(xnk)=limkf(xnk′′)=f(ξ),推出 lim ⁡ k → ∞ ( f ( x n k ′ ) − f ( x n k ′ ′ ) ) = 0 \lim _{k\to \infty } \left ( f\left ( x_{n_{k}}^{\prime } \right )- f\left ( x_{n_{k}}^{\prime \prime } \right ) \right ) =0 limk(f(xnk)f(xnk′′))=0,找到了一个与假设矛盾的特例,所以函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上一致连续。

定理5.7

f ( x ) f\left ( x \right ) f(x)在开区间 ( a , b ) \left ( a,b \right ) (a,b)上连续,则 f ( x ) f\left ( x \right ) f(x)在开区间 ( a , b ) \left ( a,b \right ) (a,b)上一致连续的充要条件是 f ( a + ) f\left ( a+ \right ) f(a+), f ( b − ) f\left ( b- \right ) f(b)存在。

<1>充分性
构造函数
f ~ ( x ) = { A = f ( a + ) a f ( x ) ( a , b ) B = f ( b − ) b \tilde{f}\left ( x \right )= \left\{\begin{matrix} A=f\left ( a+ \right ) & a \\ f\left ( x \right ) & \left ( a,b \right ) \\ B=f\left ( b- \right ) & b \end{matrix}\right. f~(x)= A=f(a+)f(x)B=f(b)a(a,b)b
使得函数 f ~ ( x ) \tilde{f}\left ( x \right ) f~(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续。
由Cantor定理, f ~ ( x ) \tilde{f}\left ( x \right ) f~(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上一致连续,推出 f ( x ) f\left ( x \right ) f(x)在开区间 ( a , b ) \left ( a,b \right ) (a,b)上一致连续。
<2>必要性
不妨以开区间 ( a , b ) \left ( a,b \right ) (a,b)的左端点 a a a处为例,
根据一致连续的定义, ∀ ε > 0 \forall \varepsilon > 0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ x ′ \forall x^{\prime } x, x ′ ′ x^{\prime \prime } x′′, ∣ x ′ − x ′ ′ ∣ < δ \left | x^{\prime}-x^{\prime\prime } \right |<\delta xx′′<δ, ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < ε \left | f \left ( x^{\prime } \right ) -f\left ( x^{\prime \prime } \right ) \right |<\varepsilon f(x)f(x′′)<ε,
在开区间 ( a , b ) \left ( a,b \right ) (a,b)中取数列 { x n } \left \{ x_{n} \right \} {xn},并且 lim ⁡ n → ∞ x n = a \lim_{n \to \infty } x_{n}=a limnxn=a, x n ≠ a x_{n}\neq a xn=a,则有 ∃ δ > 0 \exists \delta >0 δ>0: ∀ x n ′ \forall x_{n} ^{\prime } xn, x n ′ ′ x_{n}^{\prime \prime } xn′′, ∣ x n ′ − x n ′ ′ ∣ < δ \left | x_{n}^{\prime}-x_{n}^{\prime\prime } \right |<\delta xnxn′′<δ, ∣ f ( x n ′ ) − f ( x n ′ ′ ) ∣ < ε \left | f \left ( x_{n}^{\prime } \right ) -f \left ( x_{n}^{\prime \prime } \right ) \right |<\varepsilon f(xn)f(xn′′)<ε,
根据Cauchy收敛准则,基本列 { f ( x n ) } \left \{ f \left ( x_{n} \right ) \right \} {f(xn)}在左端点 a a a的右邻域 ( a , a + δ ) \left ( a,a+\delta \right ) (a,a+δ)内收敛,
引用Heine定理, f ( x ) f\left ( x \right ) f(x)在开区间 ( a , b ) \left ( a,b \right ) (a,b)的左端点 a a a的右邻域 ( a , a + δ ) \left ( a,a+\delta \right ) (a,a+δ)内收敛,开区间 ( a , b ) \left ( a,b \right ) (a,b)的左端点 a a a处的右极限 f ( a + ) f\left ( a+ \right ) f(a+)存在。
同理 f ( x ) f \left ( x \right ) f(x)在开区间 ( a , b ) \left ( a,b \right ) (a,b)的右端点 b b b处的左极限 f ( b − ) f\left ( b- \right ) f(b)存在。

  • 25
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值