积分学<3>——定积分与可积条件

定积分与可积条件

Riemann可积

定义3.1 Riemann和

若函数 f ( x ) f\left ( x \right ) f(x)是闭区间 [ a , b ] \left [ a,b \right ] [a,b]上的有界函数,对闭区间 [ a , b ] \left [ a,b \right ] [a,b]作划分 P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n , i ∈ N } P =\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n,i\in \mathbb{N}\right \} P={[xi1,xi]x0=axi1<xixn=b,1in,iN},也就是选取包含闭区间 [ a , b ] \left [ a,b \right ] [a,b]左端点a和右端点b在内的 n + 1 n+1 n+1个点 x i x_{i} xi将闭区间 [ a , b ] \left [ a,b \right ] [a,b]分为 n − 1 n-1 n1段,划分后每个闭区间 [ x i − 1 , x i ] \left [ x_{i-1},x_{i} \right ] [xi1,xi]的长度为 Δ x i = x i − x i − 1 \Delta x_{i}=x_{i}-x_{i-1} Δxi=xixi1, ∑ i = 1 n ( f ( ξ i ) Δ x i ) \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) i=1n(f(ξi)Δxi)称为Riemann和。

定义3.2 Riemann可积

λ = max ⁡ 1 ≤ i ≤ n { Δ x i } \lambda =\underset{1\le i\le n}{\max} \left \{ \Delta x_{i} \right \} λ=1inmax{Δxi}, λ → 0 \lambda \to 0 λ0代表 ∀ i ∈ [ 1 , n ] \forall i \in \left [ 1,n \right ] i[1,n], Δ x i → 0 \Delta x_{i} \to 0 Δxi0,在每个闭区间 [ x i , x i + 1 ] \left [ x_{i},x_{i+1} \right ] [xi,xi+1]任意选取点 ξ i \xi _{i} ξi,若Riemann和的极限 lim ⁡ λ → 0 ∑ i = 1 n ( f ( ξ i ) Δ x i ) = I ∈ R \lim _{\lambda \to 0} \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right )=I \in \mathbb{R} limλ0i=1n(f(ξi)Δxi)=IR存在且有限,并且与划分 P P P和取点 ξ i \xi _{i} ξi无关,则称函数 f ( x ) f\left ( x \right ) f(x)Riemann可积。

定积分的定义

定义3.3 定积分

若函数 f ( x ) f\left ( x \right ) f(x)满足Riemann可积的条件,且Riemann和的极限 lim ⁡ λ → 0 ∑ i = 1 n ( f ( ξ i ) Δ x i ) = I \lim _{\lambda \to 0} \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right )=I limλ0i=1n(f(ξi)Δxi)=I, I ∈ R I \in \mathbb{R} IR,则称 I I I为闭区间 [ x i , x i + 1 ] \left [ x_{i},x_{i+1} \right ] [xi,xi+1]上的定积分,记为 lim ⁡ λ → 0 ∑ i = 1 n ( f ( ξ i ) Δ x i ) = I = ∫ a b f ( x ) d x \lim _{\lambda \to 0} \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right )=I=\int_{a}^{b} f\left ( x \right ) dx limλ0i=1n(f(ξi)Δxi)=I=abf(x)dx
另有 ε − δ \varepsilon -\delta εδ语言表述如下:
∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n } \forall P=\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n\right \} P={[xi1,xi]x0=axi1<xixn=b,1in}, ∀ ξ i ∈ [ x i − 1 , x i ] \forall \xi_{i} \in \left [ x_{i-1},x_{i}\right ] ξi[xi1,xi], ∀ λ ∈ ( 0 , δ ) \forall \lambda \in \left ( 0,\delta \right ) λ(0,δ), ∣ ∑ i = 1 n ( f ( ξ i ) Δ x i ) − I ∣ < ε \left | \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) -I\right |< \varepsilon i=1n(f(ξi)Δxi)I<ε

定积分定义的扩展

定义3.4 Darboux上(下)和

若函数 f ( x ) f\left ( x \right ) f(x)是闭区间 [ a , b ] \left [ a,b \right ] [a,b]上的有界函数, M = sup ⁡ a ≤ x ≤ b f ( x ) M=\underset{a\le x \le b}{\sup} f\left ( x \right ) M=axbsupf(x), m = inf ⁡ a ≤ x ≤ b f ( x ) m=\underset{a\le x \le b}{\inf} f\left ( x \right ) m=axbinff(x),对闭区间 [ a , b ] \left [ a,b \right ] [a,b]作划分 P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n , i ∈ N } P =\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n,i\in \mathbb{N}\right \} P={[xi1,xi]x0=axi1<xixn=b,1in,iN},划分后每个闭区间 [ x i − 1 , x i ] \left [ x_{i-1},x_{i} \right ] [xi1,xi]又有对应的 M i = sup ⁡ x i − 1 ≤ x ≤ x i f ( x i ) M_{i} =\underset{x_{i-1} \le x \le x_{i} }{\sup} f\left ( x_{i} \right ) Mi=xi1xxisupf(xi), m i = inf ⁡ x i − 1 ≤ x ≤ x i f ( x i ) m_{i} =\underset{x_{i-1} \le x \le x_{i}}{\inf} f\left ( x_{i} \right ) mi=xi1xxiinff(xi),
定义Darboux上和 S ‾ ( P ) = ∑ i = 1 n ( M i Δ x i ) \overline{S}\left ( P \right ) = \sum_{i=1}^{n}\left ( M_{i} \Delta x_{i} \right ) S(P)=i=1n(MiΔxi),Darboux下和 S ‾ ( P ) = ∑ i = 1 n ( m i Δ x i ) \underline{S}\left (P \right ) = \sum_{i=1}^{n}\left ( m_{i} \Delta x_{i} \right ) S(P)=i=1n(miΔxi)

引理3.1

在划分 P P P中增加新分点,则新的Darboux上和不增加,新的Darboux下和不减少。

不妨设只在其中一个闭区间增加一个分点,增加多个分点可以分解为每次只增加一个分点的递归问题。
以Darboux上和为例,设在闭区间 [ x i − 1 , x i ] \left [ x_{i-1} ,x_{i} \right ] [xi1,xi]内增加新分点 x k x_{k} xk,旧划分记为 P 0 P_{0} P0,新划分记为 P 1 P_{1} P1
比较 S ‾ ( P 0 ) \overline{S}\left ( P_{0} \right ) S(P0) S ‾ ( P 1 ) \overline{S}\left ( P_{1} \right ) S(P1),除闭区间 [ x i − 1 , x i ] \left [ x_{i-1} ,x_{i} \right ] [xi1,xi]外的其余闭区间不受影响,
而对于原来的 [ x i − 1 , x i ] \left [ x_{i-1} ,x_{i} \right ] [xi1,xi],重新划分后,闭区间 [ x i − 1 , x k ] \left [ x_{i-1},x_{k} \right ] [xi1,xk]的上确界为 sup ⁡ x i − 1 ≤ x ≤ x k [ x i − 1 , x k ] = c 1 \underset{x_{i-1}\le x \le x_{k} }{\sup} \left [ x_{i-1},x_{k} \right ]=c_{1} xi1xxksup[xi1,xk]=c1,闭区间 [ x k , x i ] \left [ x_{k},x_{i} \right ] [xk,xi]的上确界为 sup ⁡ x k ≤ x ≤ x i [ x k , x i ] = c 2 \underset{x_{k}\le x \le x_{i} }{\sup} \left [ x_{k},x_{i} \right ]=c_{2} xkxxisup[xk,xi]=c2,且 c 1 ≤ M i c_{1}\le M_{i} c1Mi, c 2 ≤ M i c_{2}\le M_{i} c2Mi,
c 1 ( x i − 1 − x k ) + c 2 ( x k − x i ) ≤ M i ( x i − 1 − x k ) + M i ( x k − x i ) = M i ( x i − 1 − x i ) = M i Δ x i c_{1}\left ( x_{i-1}-x_{k} \right ) +c_{2} \left ( x_{k}-x_{i} \right ) \le M_{i}\left ( x_{i-1}-x_{k} \right )+M_{i}\left ( x_{k}-x_{i} \right ) =M_{i} \left ( x_{i-1}-x_{i} \right ) =M_{i}\Delta x_{i} c1(xi1xk)+c2(xkxi)Mi(xi1xk)+Mi(xkxi)=Mi(xi1xi)=MiΔxi,即 S ‾ ( P 0 ) ≥ S ‾ ( P 1 ) \overline{S}\left ( P_{0} \right )\ge \overline{S}\left ( P_{1} \right ) S(P0)S(P1)
同理可得 S ‾ ( P 0 ) ≤ S ‾ ( P 1 ) \underline{S}\left ( P_{0} \right )\le \underline{S}\left ( P_{1} \right ) S(P0)S(P1)

引理3.2

对任意划分 P 1 P_{1} P1, P 2 P_{2} P2,有 m ( b − a ) ≤ S ‾ ( P 1 ) ≤ S ‾ ( P 2 ) ≤ M ( b − a ) m\left ( b-a \right )\le \underline{S} \left ( P_{1} \right )\le \overline{S} \left ( P_{2} \right ) \le M\left ( b-a \right ) m(ba)S(P1)S(P2)M(ba)

构造特殊划分 P 0 = { [ a , b ] } P_{0} =\left \{ \left [ a,b \right ] \right \} P0={[a,b]}, S ‾ ( P 0 ) = m ( b − a ) \underline{S} \left ( P_{0} \right ) =m\left ( b-a \right ) S(P0)=m(ba), S ‾ ( P 0 ) = M ( b − a ) \overline{S} \left ( P_{0} \right ) =M\left ( b-a \right ) S(P0)=M(ba)
根据引理3.1, S ‾ ( P 0 ) = m ( b − a ) ≤ S ‾ ( P 1 ) \underline{S} \left ( P_{0} \right ) =m\left ( b-a \right )\le \underline{S} \left ( P_{1} \right ) S(P0)=m(ba)S(P1), S ‾ ( P 2 ) ≤ S ‾ ( P 0 ) = M ( b − a ) \overline{S} \left ( P_{2} \right ) \le \overline{S} \left ( P_{0} \right ) =M\left ( b-a \right ) S(P2)S(P0)=M(ba);
构造特殊划分 P ∗ P^{\ast } P,其为划分 P 1 P_{1} P1与划分 P 2 P_{2} P2的积划分 P 1 ⋅ P 2 P_{1} \cdot P_{2} P1P2,其分点也就是划分 P 1 P_{1} P1与划分 P 2 P_{2} P2的所有分点的并集。
根据引理3.1, S ‾ ( P 1 ) ≤ S ‾ ( P ∗ ) ≤ S ‾ ( P ∗ ) ≤ S ‾ ( P 2 ) \underline{S} \left ( P_{1} \right )\le \underline{S}\left ( P^{\ast } \right )\le \overline{S} \left ( P^{\ast } \right ) \le \overline{S} \left ( P_{2} \right ) S(P1)S(P)S(P)S(P2)

定理3.1 Darboux定理

若函数 f ( x ) f\left ( x \right ) f(x)是闭区间 [ a , b ] \left [ a,b \right ] [a,b]上的有界函数,记函数 f ( x ) f\left ( x \right ) f(x)对一切划分 P P P的全体Darboux上和构成的集合为 S ‾ = { S ‾ ( P ) } \overline{S}=\left \{ \overline{S} \left ( P \right ) \right \} S={S(P)}, L = inf ⁡ S ‾ L=\inf \overline{S} L=infS,函数 f ( x ) f\left ( x \right ) f(x)对一切划分 P P P的全体Darboux下和构成的集合为 S ‾ = { S ‾ ( P ) } \underline{S}=\left \{ \underline{S} \left ( P \right ) \right \} S={S(P)}, l = sup ⁡ S ‾ l=\sup \underline{S} l=supS,则有 lim ⁡ λ → 0 S ‾ ( P ) = L \lim_{\lambda \to 0}\overline{S}\left ( P \right )=L limλ0S(P)=L, lim ⁡ λ → 0 S ‾ ( P ) = l \lim_{\lambda \to 0}\underline{S}\left ( P \right )=l limλ0S(P)=l

以Darboux上和的下确界 L L L为例,
P ′ = { [ x i − 1 ′ , x i ′ ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x p = b , 1 ≤ i ≤ p } P^{\prime}=\left \{ \left [ x^{\prime }_{i-1},x^{\prime }_{i}\right ] \mid x_{0}=a\le x_{i-1} < x_{i} \le x_{p}=b,1\le i\le p \right \} P={[xi1,xi]x0=axi1<xixp=b,1ip},
δ 1 = min ⁡ 1 ≤ i ≤ p { Δ x i ′ } \delta_{1}= \underset{1\le i\le p}{\min}\left \{ \Delta x_{i}^{\prime } \right \} δ1=1ipmin{Δxi},任取划分 P = { [ x j − 1 , x j ] ∣ x 0 = a ≤ x j − 1 < x j ≤ x q = b , 1 ≤ j ≤ q } P=\left \{ \left [ x_{j-1},x_{j} \right ] \mid x_{0}=a\le x_{j-1} < x_{j} \le x_{q}=b,1\le j\le q \right \} P={[xj1,xj]x0=axj1<xjxq=b,1jq}, λ = max ⁡ 1 ≤ j ≤ q { Δ x j } \lambda =\underset{1\le j\le q}{\max} \left \{ \Delta x_{j} \right \} λ=1jqmax{Δxj},
构造特殊划分 P ∗ P^{\ast } P,其为划分 P P P与划分 P ′ P^{\prime} P的积划分 P ⋅ P ′ P \cdot P^{\prime} PP,其分点也就是划分 P P P与划分 P ′ P^{\prime} P的所有分点的并集。
S ‾ ( P ) − L ≤ ( S ‾ ( P ) − S ‾ ( P ∗ ) ) + ( S ‾ ( P ∗ ) − S ‾ ( P ′ ) ) + ( S ‾ ( P ′ ) − L ) \overline{S}\left ( P \right )-L \le \left ( \overline{S}\left ( P \right )-\overline{S}\left ( P^{\ast } \right ) \right )+\left ( \overline{S}\left ( P^{\ast } \right )-\overline{S}\left ( P^{\prime } \right ) \right )+\left ( \overline{S}\left ( P^{\prime } \right ) -L \right ) S(P)L(S(P)S(P))+(S(P)S(P))+(S(P)L),
由下确界定义, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ P ′ \exists P^{\prime} P: ∣ S ‾ ( P ′ ) − L ∣ < ε 2 \left | \overline{S} \left ( P^{\prime } \right ) -L \right |<\frac{\varepsilon }{2} S(P)L <2ε( I \mathrm{I} I);
引用引理3.1, S ‾ ( P ∗ ) − S ‾ ( P ′ ) ≤ 0 \overline{S}\left ( P^{\ast } \right )- \overline{S}\left ( P^{\prime } \right )\le 0 S(P)S(P)0( I I \mathrm{II} II);
考虑将 P P P的分点逐个插入原划分 P ′ P^{\prime} P中,为保证前提条件 ∀ 1 ≤ j ≤ q \forall 1\le j\le q ∀1jq, ∀ 1 ≤ i ≤ p \forall 1\le i\le p ∀1ip, Δ x j ≤ λ < δ 1 ≤ Δ x i ′ \Delta x_{j}\le \lambda <\delta _{1}\le \Delta x_{i}^{\prime } Δxjλ<δ1Δxi仍然成立,则 p − 1 p-1 p1闭区间 [ x i − 1 ′ , x i ′ ] \left [ x^{\prime }_{i-1},x^{\prime }_{i}\right ] [xi1,xi]中每个只能插入一个 P P P的分点,否则, ∃ j \exists j j: Δ x j = x j − x j − 1 > δ 1 \Delta x_{j}=x_{j}-x_{j-1}>\delta _{1} Δxj=xjxj1>δ1,违反前提条件,
δ 2 = ε 2 ( p − 1 ) ( M − m ) > 0 \delta_{2}=\frac{\varepsilon }{2\left ( p-1 \right )\left ( M-m \right ) }>0 δ2=2(p1)(Mm)ε>0,则 ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ = min ⁡ { δ 1 , δ 2 } > 0 \exists \delta =\min\left \{\delta_{1},\delta_{2} \right \}>0 δ=min{δ1,δ2}>0: ∀ P \forall P P, ∀ λ ∈ ( 0 , δ ) \forall \lambda \in \left ( 0,\delta \right ) λ(0,δ), S ‾ ( P ) − S ‾ ( P ∗ ) < ( p − 1 ) ( M − m ) δ < ε 2 \overline{S}\left ( P \right )-\overline{S}\left ( P^{\ast } \right )< \left ( p-1 \right ) \left ( M-m \right )\delta<\frac{\varepsilon }{2} S(P)S(P)<(p1)(Mm)δ<2ε( I I I \mathrm{III} III),
综合( I \mathrm{I} I),( I I \mathrm{II} II),( I I I \mathrm{III} III), ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ = min ⁡ { δ 1 , δ 2 } > 0 \exists \delta =\min\left \{\delta_{1},\delta_{2} \right \}>0 δ=min{δ1,δ2}>0: ∀ P \forall P P, ∀ λ ∈ ( 0 , δ ) \forall \lambda \in \left ( 0,\delta \right ) λ(0,δ), ∣ S ‾ ( P ) − L ∣ < ε 2 \left | \overline{S}\left ( P \right )-L \right | <\frac{\varepsilon }{2} S(P)L <2ε,即 lim ⁡ λ → 0 S ‾ ( P ) = L \lim_{\lambda \to 0}\overline{S}\left ( P \right )=L limλ0S(P)=L

定理3.2

函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]可积的充要条件为 lim ⁡ λ → 0 S ‾ ( P ) = L = l = lim ⁡ λ → 0 S ‾ ( P ) \lim _{\lambda \to 0}\overline{S}\left ( P \right ) =L=l=\lim _{\lambda \to 0}\underline{S}\left ( P \right ) limλ0S(P)=L=l=limλ0S(P)

<1>必要性
根据Riemann可积的条件, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n } \forall P=\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n\right \} P={[xi1,xi]x0=axi1<xixn=b,1in}, ∀ ξ i ∈ [ x i − 1 , x i ] \forall \xi_{i} \in \left [ x_{i-1},x_{i}\right ] ξi[xi1,xi], ∀ λ ∈ ( 0 , δ ) \forall \lambda \in \left ( 0,\delta \right ) λ(0,δ), ∣ ∑ i = 1 n ( f ( ξ i ) Δ x i ) − I ∣ < ε 2 \left | \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) -I\right |< \frac{\varepsilon }{2} i=1n(f(ξi)Δxi)I<2ε( I \mathrm{I } I);
ξ i ∈ [ x i − 1 , x i ] \xi _{i}\in \left [ x_{i-1} ,x_{i} \right ] ξi[xi1,xi]: ∣ M i − f ( ξ i ) ∣ < ε 2 ( b − a ) \left | M_{i}-f\left ( \xi _{i} \right ) \right | < \frac{\varepsilon }{2\left ( b-a \right ) } Mif(ξi)<2(ba)ε,
则有 ∣ S ‾ ( P ) − ∑ i = 1 n ( f ( ξ i ) Δ x i ) ∣ = ∣ ∑ i = 1 n [ ( M i − f ( ξ i ) ) Δ x i ] ∣ < ( b − a ) ⋅ ε 2 ( b − a ) = ε 2 \left | \overline{S}\left ( P \right )-\sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) \right |=\left | \sum_{i=1}^{n} \left [ \left ( M_{i}-f\left ( \xi _{i} \right ) \right )\Delta x_{i} \right ] \right |<\left ( b-a \right ) \cdot \frac{\varepsilon }{2\left ( b-a \right ) } =\frac{\varepsilon }{2} S(P)i=1n(f(ξi)Δxi) =i=1n[(Mif(ξi))Δxi]<(ba)2(ba)ε=2ε( I I \mathrm{II} II);
综合( I \mathrm{I} I),( I I \mathrm{II} II)可知, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n } \forall P=\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n\right \} P={[xi1,xi]x0=axi1<xixn=b,1in}, ∀ ξ i ∈ [ x i − 1 , x i ] \forall \xi_{i} \in \left [ x_{i-1},x_{i}\right ] ξi[xi1,xi], ∀ λ ∈ ( 0 , δ ) \forall \lambda \in \left ( 0,\delta \right ) λ(0,δ), ∣ S ‾ ( P ) − I ∣ ≤ ∣ S ‾ ( P ) − ∑ i = 1 n ( f ( ξ i ) Δ x i ) ∣ + ∣ ∑ i = 1 n ( f ( ξ i ) Δ x i ) − I ∣ < ε \left | \overline{S}\left ( P \right )-I \right |\le \left | \overline{S}\left ( P \right )-\sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) \right |+\left | \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) -I\right |<\varepsilon S(P)I S(P)i=1n(f(ξi)Δxi) +i=1n(f(ξi)Δxi)I<ε,即 lim ⁡ λ → 0 S ‾ ( P ) = I \lim _{\lambda \to 0}\overline{S}\left ( P \right ) =I limλ0S(P)=I
<2>充分性
由定义易得 S ‾ ( P ) ≤ ∑ i = 1 n ( f ( ξ i ) Δ x i ) ≤ S ‾ ( P ) \overline{S}\left ( P \right ) \le \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right )\le \underline{S}\left ( P \right ) S(P)i=1n(f(ξi)Δxi)S(P)
由两边夹原理, L = lim ⁡ λ → 0 S ‾ ( P ) = lim ⁡ λ → 0 [ ∑ i = 1 n ( f ( ξ i ) Δ x i ) ] = lim ⁡ λ → 0 S ‾ ( P ) = l L=\lim _{\lambda \to 0} \overline{S}\left ( P \right ) = \lim _{\lambda \to 0}\left [ \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) \right ] = \lim _{\lambda \to 0}\underline{S}\left ( P \right )=l L=limλ0S(P)=limλ0[i=1n(f(ξi)Δxi)]=limλ0S(P)=l,满足Riemann可积的条件。

Riemann可积的等价表述

记函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ x i − 1 , x i ] \left [ x_{i-1} ,x_{i} \right ] [xi1,xi]上的最大值与最小值之差 M i − m i M_{i}-m_{i} Mimi为振幅 ω i \omega _{i} ωi,则定理3.2中的Riemann可积充要条件 lim ⁡ λ → 0 S ‾ ( P ) = L = l = lim ⁡ λ → 0 S ‾ ( P ) ⇔ lim ⁡ λ → 0 [ ∑ i = 1 n ( ω i Δ x i ) ] = 0 \lim _{\lambda \to 0}\overline{S}\left ( P \right ) =L=l=\lim _{\lambda \to 0}\underline{S}\left ( P \right )\Leftrightarrow \lim _{\lambda \to 0}\left [ \sum_{i=1}^{n} \left ( \omega _{i} \Delta x_{i} \right ) \right ] =0 limλ0S(P)=L=l=limλ0S(P)limλ0[i=1n(ωiΔxi)]=0

远算性质

定理4.1 定积分的线性性

若函数 f ( x ) f\left ( x \right ) f(x), g ( x ) g\left ( x \right ) g(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积,则函数 k 1 f ( x ) + k 2 g ( x ) k_{1}f\left ( x \right ) +k_{2}g\left ( x \right ) k1f(x)+k2g(x)也在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积,且 ∫ a b k 1 f ( x ) + k 2 g ( x ) d x = k 1 ∫ a b f ( x ) d x + k 2 ∫ a b g ( x ) d x \int_{a}^{b}k_{1}f\left ( x \right ) +k_{2}g\left ( x \right ) dx=k_{1} \int_{a}^{b}f\left ( x \right )dx+ k_{2} \int_{a}^{b}g\left ( x \right )dx abk1f(x)+k2g(x)dx=k1abf(x)dx+k2abg(x)dx

定理4.2 定积分的乘积可积性

若函数 f ( x ) f\left ( x \right ) f(x), g ( x ) g\left ( x \right ) g(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积,则函数 f ( x ) ⋅ g ( x ) f\left ( x \right ) \cdot g\left ( x \right ) f(x)g(x)也在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积。

定理4.3 定积分的保序性

若函数 f ( x ) f\left ( x \right ) f(x), g ( x ) g\left ( x \right ) g(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积, f ( x ) ≥ g ( x ) f\left ( x \right )\ge g\left ( x \right ) f(x)g(x), ∫ b a f ( x ) d x ≥ ∫ b a g ( x ) d x \int_{b}^{a} f\left ( x \right )dx\ge \int_{b}^{a}g\left ( x \right ) dx baf(x)dxbag(x)dx

构造函数 h ( x ) = f ( x ) − g ( x ) ≥ 0 h\left ( x \right )=f\left ( x \right )-g\left ( x \right ) \ge 0 h(x)=f(x)g(x)0
根据定积分的线性性,函数 h ( x ) h\left ( x \right ) h(x)可积,且 ∫ a b h ( x ) d x = ∫ a b f ( x ) − g ( x ) d x = ∫ a b f ( x ) d x − ∫ a b g ( x ) d x \int_{a}^{b} h\left ( x \right ) dx=\int_{a}^{b} f\left ( x \right ) -g\left ( x \right )dx=\int_{a}^{b} f\left ( x \right )dx-\int_{a}^{b} g\left ( x \right )dx abh(x)dx=abf(x)g(x)dx=abf(x)dxabg(x)dx,
∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ P \forall P P, ∀ ξ i ∈ [ x i − 1 , x i ] \forall \xi_{i} \in \left [ x_{i-1},x_{i}\right ] ξi[xi1,xi], ∀ λ ∈ ( 0 , δ ) \forall \lambda \in \left ( 0,\delta \right ) λ(0,δ), ∑ i = 1 n ( h ( ξ i ) Δ x i ) ≥ 0 \sum_{i=1}^{n} \left ( h\left ( \xi _{i} \right ) \Delta x_{i} \right )\ge 0 i=1n(h(ξi)Δxi)0,
根据数列极限的保序性, ∫ a b h ( x ) d x = lim ⁡ λ → 0 [ ∑ i = 1 n ( h ( ξ i ) Δ x i ) ] ≥ 0 \int_{a}^{b} h\left ( x \right ) dx=\lim _{\lambda \to 0} \left [ \sum_{i=1}^{n} \left ( h\left ( \xi _{i} \right ) \Delta x_{i} \right ) \right ] \ge 0 abh(x)dx=limλ0[i=1n(h(ξi)Δxi)]0,即 ∫ a b f ( x ) d x ≥ ∫ a b g ( x ) d x \int_{a}^{b} f\left ( x \right )dx \ge \int_{a}^{b} g\left ( x \right )dx abf(x)dxabg(x)dx

定理4.4 定积分的绝对可积性

若函数 f ( x ) f\left ( x \right ) f(x), g ( x ) g\left ( x \right ) g(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积,则函数 ∣ f ( x ) ∣ \left | f\left ( x \right ) \right | f(x)也在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积,且 ∫ a b ∣ f ( x ) ∣ d x ≥ ∫ a b f ( x ) d x \int_{a}^{b} \left | f\left ( x \right ) \right |dx \ge \int_{a}^{b} f\left ( x \right )dx abf(x)dxabf(x)dx

定理4.5 定积分的区间可加性

若函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积, c ∈ ( a , b ) c\in \left ( a,b \right ) c(a,b),则函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , c ] \left [ a,c \right ] [a,c], [ c , b ] \left [ c,b \right ] [c,b]上均可积,反之亦然,且 ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_{a}^{b} f\left ( x \right ) dx=\int_{a}^{c} f\left ( x \right ) dx + \int_{c}^{b} f\left ( x \right ) dx abf(x)dx=acf(x)dx+cbf(x)dx

若函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积,则可取一个划分 P P P,设 c c c P P P的一个分点 x k x_{k} xk(如不然,将c作为新分点添加入划分P,根据引理3.1, ∣ ∑ i = 1 n ( ω i Δ x i ) ∣ < ε \left | \sum_{i=1}^{n}\left ( \omega _{i} \Delta x_{i} \right ) \right | <\varepsilon i=1n(ωiΔxi)<ε仍然成立),
在闭区间 [ a , c ] \left [ a,c \right ] [a,c]上存在划分 P 1 = { [ x i , x i − 1 ] ∣ 1 ≤ i ≤ k } P_{1} =\left \{ \left [ x_{i},x_{i-1} \right ] \mid 1\le i\le k \right \} P1={[xi,xi1]1ik}: ∣ ∑ i = 1 n ( ω i Δ x i ) ∣ < ε \left | \sum_{i=1}^{n}\left ( \omega _{i} \Delta x_{i} \right ) \right | <\varepsilon i=1n(ωiΔxi)<ε,函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , c ] \left [ a,c \right ] [a,c]上可积,
在闭区间 [ c , b ] \left [ c,b \right ] [c,b]上存在划分 P 2 = { [ x i , x i − 1 ] ∣ k + 1 ≤ i ≤ n } P_{2} =\left \{ \left [ x_{i},x_{i-1} \right ] \mid k+1\le i\le n \right \} P2={[xi,xi1]k+1in}: ∣ ∑ i = 1 n ( ω i Δ x i ) ∣ < ε \left | \sum_{i=1}^{n}\left ( \omega _{i} \Delta x_{i} \right ) \right | <\varepsilon i=1n(ωiΔxi)<ε,函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ c , b ] \left [ c,b \right ] [c,b]上可积;
反之,若函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , c ] \left [ a,c \right ] [a,c], [ c , b ] \left [ c,b \right ] [c,b]上均可积,
设在闭区间 [ a , c ] \left [ a,c \right ] [a,c]上存在划分 P 1 = { [ x i , x i − 1 ] ∣ 1 ≤ i ≤ k } P_{1} =\left \{ \left [ x_{i},x_{i-1} \right ] \mid 1\le i\le k \right \} P1={[xi,xi1]1ik}: ∣ ∑ i = 1 n ( ω i Δ x i ) ∣ < ε 2 \left | \sum_{i=1}^{n}\left ( \omega_{i} \Delta x_{i} \right ) \right | <\frac{\varepsilon }{2} i=1n(ωiΔxi)<2ε,在闭区间 [ c , b ] \left [ c,b \right ] [c,b]上存在划分 P 2 = { [ x i , x i − 1 ] ∣ k + 1 ≤ i ≤ n } P_{2} =\left \{ \left [ x_{i},x_{i-1} \right ] \mid k+1\le i\le n \right \} P2={[xi,xi1]k+1in}: ∣ ∑ i = 1 n ( ω i Δ x i ) ∣ < ε 2 \left | \sum_{i=1}^{n}\left ( \omega _{i} \Delta x_{i} \right ) \right | <\frac{\varepsilon }{2} i=1n(ωiΔxi)<2ε,
对于划分 P 1 P_{1} P1, P 2 P_{2} P2,其积划分 P = P 1 ⋅ P 2 P=P_{1}\cdot P_{2} P=P1P2仍满足 lim ⁡ λ → 0 [ ∑ i = 1 n f ( ( ω i Δ x i ) ) ] \lim_{\lambda \to 0} \left [ \sum_{i=1}^{n} f\left ( \left ( \omega _{i}\Delta x_{i} \right ) \right ) \right ] limλ0[i=1nf((ωiΔxi))],函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积。
取一个包含分点c=x_{r}的划分P,设在闭区间 [ a , c ] \left [ a,c \right ] [a,c]上存在划分 P 1 = { [ x i , x i − 1 ] ∣ 1 ≤ i ≤ r } P_{1} =\left \{ \left [ x_{i},x_{i-1} \right ] \mid 1\le i\le r \right \} P1={[xi,xi1]1ir},在闭区间 [ c , b ] \left [ c,b \right ] [c,b]上存在划分 P 2 = { [ x i , x i − 1 ] ∣ r + 1 ≤ i ≤ n } P_{2} =\left \{ \left [ x_{i},x_{i-1} \right ] \mid r+1\le i\le n \right \} P2={[xi,xi1]r+1in},
易知 ∑ i = 1 n ( f ( ω i ) Δ x i ) = ∑ i = 1 k ( f ( ξ i ) Δ x i ) + ∑ i = k + 1 n ( ω i Δ x i ) \sum_{i=1}^{n} \left ( f\left ( \omega _{i} \right )\Delta x_{i} \right ) =\sum_{i=1}^{k} \left ( f\left ( \xi _{i} \right )\Delta x_{i} \right ) +\sum_{i=k+1}^{n} \left ( \omega_{i} \Delta x_{i} \right ) i=1n(f(ωi)Δxi)=i=1k(f(ξi)Δxi)+i=k+1n(ωiΔxi),对等式两边取 λ → 0 \lambda \to 0 λ0时的极限,可得 lim ⁡ λ → 0 [ ∑ i = 1 n ( ω i Δ x i ) ] = lim ⁡ λ → 0 [ ∑ i = 1 k ( f ( ξ i ) Δ x i ) ] + lim ⁡ λ → 0 [ ∑ i = k + 1 n ( f ( ξ i ) Δ x i ) ] \lim _{\lambda \to 0} \left [ \sum_{i=1}^{n} \left ( \omega_{i} \Delta x_{i} \right )\right ]=\lim _{\lambda \to 0} \left [ \sum_{i=1}^{k} \left ( f\left ( \xi _{i} \right )\Delta x_{i} \right )\right ] +\lim _{\lambda \to 0} \left [ \sum_{i=k+1}^{n} \left ( f\left ( \xi _{i} \right )\Delta x_{i} \right )\right ] limλ0[i=1n(ωiΔxi)]=limλ0[i=1k(f(ξi)Δxi)]+limλ0[i=k+1n(f(ξi)Δxi)],即 ∫ a b ∣ f ( x ) ∣ d x ≥ ∫ a b f ( x ) d x \int_{a}^{b} \left | f\left ( x \right ) \right |dx \ge \int_{a}^{b} f\left ( x \right )dx abf(x)dxabf(x)dx

积分中值定理

积分第一中值定理

若函数 f ( x ) f\left ( x \right ) f(x), g ( x ) g\left ( x \right ) g(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可积,且 g ( x ) g\left ( x \right ) g(x)不变号,则 ∃ η ∈ [ m , M ] \exists \eta \in \left [ m,M \right ] η[m,M]( m = inf ⁡ f ( x ) m=\inf f\left ( x \right ) m=inff(x), M = max ⁡ f ( x ) M=\max f\left ( x \right ) M=maxf(x)): ∫ a b f ( x ) g ( x ) d x = η ∫ a b g ( x ) d x \int_{a}^{b} f\left ( x \right ) g\left ( x \right )dx=\eta \int_{a}^{b} g\left ( x \right ) dx abf(x)g(x)dx=ηabg(x)dx
若函数 f ( x ) f\left ( x \right ) f(x)是闭区间 [ a , b ] \left [ a,b \right ] [a,b]上的连续函数,则 ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ξ(a,b): ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x \int_{a}^{b} f\left ( x \right )g\left ( x \right )dx =f\left ( \xi \right )\int_{a}^{b}g\left ( x \right )dx abf(x)g(x)dx=f(ξ)abg(x)dx

易知 m g ( x ) ≤ f ( x ) g ( x ) ≤ M g ( x ) m g\left ( x \right ) \le f\left ( x \right ) g\left ( x \right ) \le M g\left ( x \right ) mg(x)f(x)g(x)Mg(x),
根据定积分的保序性和线性性, m ∫ a b g ( x ) d x ≤ ∫ a b f ( x ) g ( x ) d x ≤ M ∫ a b g ( x ) d x m\int_{a}^{b} g\left ( x \right )dx \le \int_{a}^{b} f\left ( x \right ) g\left ( x \right )dx \le M\int_{a}^{b} g\left ( x \right )dx mabg(x)dxabf(x)g(x)dxMabg(x)dx,即 m ≤ η = ∫ a b f ( x ) g ( x ) d x ∫ a b g ( x ) d x ≤ M m \le \eta =\frac{\int_{a}^{b} f\left ( x \right ) g\left ( x \right )dx}{\int_{a}^{b} g\left ( x \right )dx}\le M mη=abg(x)dxabf(x)g(x)dxM
若函数 f ( x ) f\left ( x \right ) f(x)是闭区间 [ a , b ] \left [ a,b \right ] [a,b]上的连续函数,引用介值定理, ∃ ξ : f ( ξ ) = η ∈ ( m , M ) \exists \xi:f\left ( \xi \right )=\eta \in \left ( m,M \right ) ξ:f(ξ)=η(m,M)

  • 22
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值