索引
定积分与可积条件
Riemann可积
定义3.1 Riemann和
若函数 f ( x ) f\left ( x \right ) f(x)是闭区间 [ a , b ] \left [ a,b \right ] [a,b]上的有界函数,对闭区间 [ a , b ] \left [ a,b \right ] [a,b]作划分 P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n , i ∈ N } P =\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n,i\in \mathbb{N}\right \} P={ [xi−1,xi]∣x0=a≤xi−1<xi≤xn=b,1≤i≤n,i∈N},也就是选取包含闭区间 [ a , b ] \left [ a,b \right ] [a,b]左端点a和右端点b在内的 n + 1 n+1 n+1个点 x i x_{i} xi将闭区间 [ a , b ] \left [ a,b \right ] [a,b]分为 n − 1 n-1 n−1段,划分后每个闭区间 [ x i − 1 , x i ] \left [ x_{i-1},x_{i} \right ] [xi−1,xi]的长度为 Δ x i = x i − x i − 1 \Delta x_{i}=x_{i}-x_{i-1} Δxi=xi−xi−1, ∑ i = 1 n ( f ( ξ i ) Δ x i ) \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) ∑i=1n(f(ξi)Δxi)称为Riemann和。
定义3.2 Riemann可积
记 λ = max 1 ≤ i ≤ n { Δ x i } \lambda =\underset{1\le i\le n}{\max} \left \{ \Delta x_{i} \right \} λ=1≤i≤nmax{ Δxi}, λ → 0 \lambda \to 0 λ→0代表 ∀ i ∈ [ 1 , n ] \forall i \in \left [ 1,n \right ] ∀i∈[1,n], Δ x i → 0 \Delta x_{i} \to 0 Δxi→0,在每个闭区间 [ x i , x i + 1 ] \left [ x_{i},x_{i+1} \right ] [xi,xi+1]任意选取点 ξ i \xi _{i} ξi,若Riemann和的极限 lim λ → 0 ∑ i = 1 n ( f ( ξ i ) Δ x i ) = I ∈ R \lim _{\lambda \to 0} \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right )=I \in \mathbb{R} limλ→0∑i=1n(f(ξi)Δxi)=I∈R存在且有限,并且与划分 P P P和取点 ξ i \xi _{i} ξi无关,则称函数 f ( x ) f\left ( x \right ) f(x)Riemann可积。
定积分的定义
定义3.3 定积分
若函数 f ( x ) f\left ( x \right ) f(x)满足Riemann可积的条件,且Riemann和的极限 lim λ → 0 ∑ i = 1 n ( f ( ξ i ) Δ x i ) = I \lim _{\lambda \to 0} \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right )=I limλ→0∑i=1n(f(ξi)Δxi)=I, I ∈ R I \in \mathbb{R} I∈R,则称 I I I为闭区间 [ x i , x i + 1 ] \left [ x_{i},x_{i+1} \right ] [xi,xi+1]上的定积分,记为 lim λ → 0 ∑ i = 1 n ( f ( ξ i ) Δ x i ) = I = ∫ a b f ( x ) d x \lim _{\lambda \to 0} \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right )=I=\int_{a}^{b} f\left ( x \right ) dx limλ→0∑i=1n(f(ξi)Δxi)=I=∫abf(x)dx。
另有 ε − δ \varepsilon -\delta ε−δ语言表述如下:
∀ ε > 0 \forall \varepsilon >0 ∀ε>0, ∃ δ > 0 \exists \delta >0 ∃δ>0: ∀ P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n } \forall P=\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n\right \} ∀P={
[xi−1,xi]∣x0=a≤xi−1<xi≤xn=b,1≤i≤n}, ∀ ξ i ∈ [ x i − 1 , x i ] \forall \xi_{i} \in \left [ x_{i-1},x_{i}\right ] ∀ξi∈[xi−1,xi], ∀ λ ∈ ( 0 , δ ) \forall \lambda \in \left ( 0,\delta \right ) ∀λ∈(0,δ), ∣ ∑ i = 1 n ( f ( ξ i ) Δ x i ) − I ∣ < ε \left | \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) -I\right |< \varepsilon ∣∑i=1n(f(ξi)Δxi)−I∣<ε。
定积分定义的扩展
定义3.4 Darboux上(下)和
若函数 f ( x ) f\left ( x \right ) f(x)是闭区间 [ a , b ] \left [ a,b \right ] [a,b]上的有界函数, M = sup a ≤ x ≤ b f ( x ) M=\underset{a\le x \le b}{\sup} f\left ( x \right ) M=a≤x≤bsupf(x), m = inf a ≤ x ≤ b f ( x ) m=\underset{a\le x \le b}{\inf} f\left ( x \right ) m=a≤x≤binff(x),对闭区间 [ a , b ] \left [ a,b \right ] [a,b]作划分 P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n , i ∈ N } P =\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n,i\in \mathbb{N}\right \} P={
[xi−1,xi]∣x0=a≤xi−1<xi≤xn=b,1≤i≤n,i∈N},划分后每个闭区间 [ x i − 1 , x i ] \left [ x_{i-1},x_{i} \right ] [xi−1,xi]又有对应的 M i = sup x i − 1 ≤ x ≤ x i f ( x i ) M_{i} =\underset{x_{i-1} \le x \le x_{i} }{\sup} f\left ( x_{i} \right ) Mi=xi−1≤x≤xisupf(xi), m i = inf x i − 1 ≤ x ≤ x i f ( x i ) m_{i} =\underset{x_{i-1} \le x \le x_{i}}{\inf} f\left ( x_{i} \right ) mi=xi−1≤x≤xiinff(xi),
定义Darboux上和 S ‾ ( P ) = ∑ i = 1 n ( M i Δ x i ) \overline{S}\left ( P \right ) = \sum_{i=1}^{n}\left ( M_{i} \Delta x_{i} \right ) S(P)=∑i=1n(MiΔxi),Darboux下和 S ‾ ( P ) = ∑ i = 1 n ( m i Δ x i ) \underline{S}\left (P \right ) = \sum_{i=1}^{n}\left ( m_{i} \Delta x_{i} \right ) S(P)=∑i=1n(miΔxi)。
引理3.1
在划分 P P P中增加新分点,则新的Darboux上和不增加,新的Darboux下和不减少。
不妨设只在其中一个闭区间增加一个分点,增加多个分点可以分解为每次只增加一个分点的递归问题。
以Darboux上和为例,设在闭区间 [ x i − 1 , x i ] \left [ x_{i-1} ,x_{i} \right ] [xi−1,xi]内增加新分点 x k x_{k} xk,旧划分记为 P 0 P_{0} P0,新划分记为 P 1 P_{1} P1。
比较 S ‾ ( P 0 ) \overline{S}\left ( P_{0} \right ) S(P0)与 S ‾ ( P 1 ) \overline{S}\left ( P_{1} \right ) S(P1),除闭区间 [ x i − 1 , x i ] \left [ x_{i-1} ,x_{i} \right ] [xi−1,xi]外的其余闭区间不受影响,
而对于原来的 [ x i − 1 , x i ] \left [ x_{i-1} ,x_{i} \right ] [xi−1,xi],重新划分后,闭区间 [ x i − 1 , x k ] \left [ x_{i-1},x_{k} \right ] [xi−1,xk]的上确界为 sup x i − 1 ≤ x ≤ x k [ x i − 1 , x k ] = c 1 \underset{x_{i-1}\le x \le x_{k} }{\sup} \left [ x_{i-1},x_{k} \right ]=c_{1} xi−1≤x≤xksup[xi−1</