积分学<3>——定积分与可积条件

定积分与可积条件

Riemann可积

定义3.1 Riemann和

若函数 f ( x ) f\left ( x \right ) f(x)是闭区间 [ a , b ] \left [ a,b \right ] [a,b]上的有界函数,对闭区间 [ a , b ] \left [ a,b \right ] [a,b]作划分 P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n , i ∈ N } P =\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n,i\in \mathbb{N}\right \} P={ [xi1,xi]x0=axi1<xixn=b,1in,iN},也就是选取包含闭区间 [ a , b ] \left [ a,b \right ] [a,b]左端点a和右端点b在内的 n + 1 n+1 n+1个点 x i x_{i} xi将闭区间 [ a , b ] \left [ a,b \right ] [a,b]分为 n − 1 n-1 n1段,划分后每个闭区间 [ x i − 1 , x i ] \left [ x_{i-1},x_{i} \right ] [xi1,xi]的长度为 Δ x i = x i − x i − 1 \Delta x_{i}=x_{i}-x_{i-1} Δxi=xixi1, ∑ i = 1 n ( f ( ξ i ) Δ x i ) \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) i=1n(f(ξi)Δxi)称为Riemann和。

定义3.2 Riemann可积

λ = max ⁡ 1 ≤ i ≤ n { Δ x i } \lambda =\underset{1\le i\le n}{\max} \left \{ \Delta x_{i} \right \} λ=1inmax{ Δxi}, λ → 0 \lambda \to 0 λ0代表 ∀ i ∈ [ 1 , n ] \forall i \in \left [ 1,n \right ] i[1,n], Δ x i → 0 \Delta x_{i} \to 0 Δxi0,在每个闭区间 [ x i , x i + 1 ] \left [ x_{i},x_{i+1} \right ] [xi,xi+1]任意选取点 ξ i \xi _{i} ξi,若Riemann和的极限 lim ⁡ λ → 0 ∑ i = 1 n ( f ( ξ i ) Δ x i ) = I ∈ R \lim _{\lambda \to 0} \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right )=I \in \mathbb{R} limλ0i=1n(f(ξi)Δxi)=IR存在且有限,并且与划分 P P P和取点 ξ i \xi _{i} ξi无关,则称函数 f ( x ) f\left ( x \right ) f(x)Riemann可积。

定积分的定义

定义3.3 定积分

若函数 f ( x ) f\left ( x \right ) f(x)满足Riemann可积的条件,且Riemann和的极限 lim ⁡ λ → 0 ∑ i = 1 n ( f ( ξ i ) Δ x i ) = I \lim _{\lambda \to 0} \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right )=I limλ0i=1n(f(ξi)Δxi)=I, I ∈ R I \in \mathbb{R} IR,则称 I I I为闭区间 [ x i , x i + 1 ] \left [ x_{i},x_{i+1} \right ] [xi,xi+1]上的定积分,记为 lim ⁡ λ → 0 ∑ i = 1 n ( f ( ξ i ) Δ x i ) = I = ∫ a b f ( x ) d x \lim _{\lambda \to 0} \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right )=I=\int_{a}^{b} f\left ( x \right ) dx limλ0i=1n(f(ξi)Δxi)=I=abf(x)dx
另有 ε − δ \varepsilon -\delta εδ语言表述如下:
∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n } \forall P=\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n\right \} P={ [xi1,xi]x0=axi1<xixn=b,1in}, ∀ ξ i ∈ [ x i − 1 , x i ] \forall \xi_{i} \in \left [ x_{i-1},x_{i}\right ] ξi[xi1,xi], ∀ λ ∈ ( 0 , δ ) \forall \lambda \in \left ( 0,\delta \right ) λ(0,δ), ∣ ∑ i = 1 n ( f ( ξ i ) Δ x i ) − I ∣ < ε \left | \sum_{i=1}^{n} \left ( f\left ( \xi _{i} \right ) \Delta x_{i} \right ) -I\right |< \varepsilon i=1n(f(ξi)Δxi)I<ε

定积分定义的扩展

定义3.4 Darboux上(下)和

若函数 f ( x ) f\left ( x \right ) f(x)是闭区间 [ a , b ] \left [ a,b \right ] [a,b]上的有界函数, M = sup ⁡ a ≤ x ≤ b f ( x ) M=\underset{a\le x \le b}{\sup} f\left ( x \right ) M=axbsupf(x), m = inf ⁡ a ≤ x ≤ b f ( x ) m=\underset{a\le x \le b}{\inf} f\left ( x \right ) m=axbinff(x),对闭区间 [ a , b ] \left [ a,b \right ] [a,b]作划分 P = { [ x i − 1 , x i ] ∣ x 0 = a ≤ x i − 1 < x i ≤ x n = b , 1 ≤ i ≤ n , i ∈ N } P =\left \{ \left [ x_{i-1},x_{i} \right ]\mid x_{0}=a\le x_{i-1}<x_{i} \le x_{n}=b,1\le i \le n,i\in \mathbb{N}\right \} P={ [xi1,xi]x0=axi1<xixn=b,1in,iN},划分后每个闭区间 [ x i − 1 , x i ] \left [ x_{i-1},x_{i} \right ] [xi1,xi]又有对应的 M i = sup ⁡ x i − 1 ≤ x ≤ x i f ( x i ) M_{i} =\underset{x_{i-1} \le x \le x_{i} }{\sup} f\left ( x_{i} \right ) Mi=xi1xxisupf(xi), m i = inf ⁡ x i − 1 ≤ x ≤ x i f ( x i ) m_{i} =\underset{x_{i-1} \le x \le x_{i}}{\inf} f\left ( x_{i} \right ) mi=xi1xxiinff(xi),
定义Darboux上和 S ‾ ( P ) = ∑ i = 1 n ( M i Δ x i ) \overline{S}\left ( P \right ) = \sum_{i=1}^{n}\left ( M_{i} \Delta x_{i} \right ) S(P)=i=1n(MiΔxi),Darboux下和 S ‾ ( P ) = ∑ i = 1 n ( m i Δ x i ) \underline{S}\left (P \right ) = \sum_{i=1}^{n}\left ( m_{i} \Delta x_{i} \right ) S(P)=i=1n(miΔxi)

引理3.1

在划分 P P P中增加新分点,则新的Darboux上和不增加,新的Darboux下和不减少。

不妨设只在其中一个闭区间增加一个分点,增加多个分点可以分解为每次只增加一个分点的递归问题。
以Darboux上和为例,设在闭区间 [ x i − 1 , x i ] \left [ x_{i-1} ,x_{i} \right ] [xi1,xi]内增加新分点 x k x_{k} xk,旧划分记为 P 0 P_{0} P0,新划分记为 P 1 P_{1} P1
比较 S ‾ ( P 0 ) \overline{S}\left ( P_{0} \right ) S(P0) S ‾ ( P 1 ) \overline{S}\left ( P_{1} \right ) S(P1),除闭区间 [ x i − 1 , x i ] \left [ x_{i-1} ,x_{i} \right ] [xi1,xi]外的其余闭区间不受影响,
而对于原来的 [ x i − 1 , x i ] \left [ x_{i-1} ,x_{i} \right ] [xi1,xi],重新划分后,闭区间 [ x i − 1 , x k ] \left [ x_{i-1},x_{k} \right ] [xi1,xk]的上确界为 sup ⁡ x i − 1 ≤ x ≤ x k [ x i − 1 , x k ] = c 1 \underset{x_{i-1}\le x \le x_{k} }{\sup} \left [ x_{i-1},x_{k} \right ]=c_{1} xi1xxksup[xi1</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值