微分学<3>——高阶导数

高阶导数

高阶导数的概念

定义3.1 高阶导数

y = f ( x ) y=f\left ( x \right ) y=f(x)的前 n − 1 n-1 n1阶导函数均存在,且第 n − 1 n-1 n1阶导函数可导,则将 f ( x ) f\left ( x \right ) f(x)的第 n − 1 n-1 n1阶导函数的求导产物称为 f ( x ) f\left ( x \right ) f(x) n n n阶导函数,记作 [ f ( n − 1 ) ( x ) ] ′ = f ( n ) ( x ) \left [ f^{\left ( n-1 \right ) } \left ( x \right ) \right ]^{\prime }=f^{\left ( n \right ) } \left ( x \right ) [f(n1)(x)]=f(n)(x) d n y ( d x ) n = d n y d x n \frac{d^{n}y }{\left ( dx \right )^{n} }=\frac{d^{n}y }{ dx ^{n} } (dx)ndny=dxndny, d n f ( d x ) n = d n f d x n \frac{d^{n}f }{\left ( dx \right )^{n} }=\frac{d^{n}f }{ dx ^{n} } (dx)ndnf=dxndnf,在工程问题中,一阶导数 f ′ ( x ) f^{\prime } \left ( x \right ) f(x)又通常记为 x ˙ \dot{x} x˙,二阶导数 f ′ ′ ( x ) f^{\prime \prime }\left ( x \right ) f′′(x)又通常记为 x ¨ \ddot{x} x¨
定义 f ( 0 ) ( x ) = f ( x ) f^{\left ( 0 \right ) } \left ( x \right )=f\left ( x \right ) f(0)(x)=f(x)

高阶导数的运算法则

定理3.1

f ( x ) f\left ( x \right ) f(x), g ( x ) g\left ( x \right ) g(x)均可导,则 [ α f ( x ) + β g ( x ) ] ( n ) = α f ( n ) ( x ) + β g ( n ) ( x ) \left [ \alpha f\left ( x \right )+\beta g\left ( x \right ) \right ]^{\left ( n \right ) }=\alpha f^{\left ( n \right ) }\left ( x \right ) +\beta g^{\left ( n \right ) }\left ( x \right ) [αf(x)+βg(x)](n)=αf(n)(x)+βg(n)(x)

定理3.2 Lebniz公式

f ( x ) f\left ( x \right ) f(x), g ( x ) g\left ( x \right ) g(x)均可导,则 ( f ( x ) ⋅ g ( x ) ) ( n ) = ∑ k = 0 n ( C n k f ( n − k ) g ( k ) ) \left ( f\left ( x \right )\cdot g\left ( x \right ) \right )^{\left ( n \right ) }= \sum_{k=0}^{n} \left ( C_{n}^{k} f^{\left ( n-k \right ) }g^{\left ( k \right ) } \right ) (f(x)g(x))(n)=k=0n(Cnkf(nk)g(k))

第1类数学归纳法,对求导阶数 n n n进行归纳。
n = 1 n=1 n=1时, ( f ( x ) ⋅ g ( x ) ) ′ = C 1 1 f ′ ( x ) ⋅ g ( x ) + C 1 0 g ′ ( x ) ⋅ f ( x ) \left ( f\left ( x \right )\cdot g\left ( x \right ) \right )^{\prime }=C_{1}^{1} f^{\prime } \left ( x \right ) \cdot g\left ( x \right ) + C_{1}^{0} g^{\prime } \left ( x \right ) \cdot f\left ( x \right ) (f(x)g(x))=C11f(x)g(x)+C10g(x)f(x),满足归纳假设。
设前 n n n阶导数中归纳假设均成立,对 n + 1 n+1 n+1阶进行讨论,
( f ( x ) g ( x ) ) ( n + 1 ) = [ ( f ( x ) g ( x ) ) ( n ) ] ′ = [ ∑ k = 0 n ( C k n f ( n − k ) g ( k ) ) ] ′ = ∑ k = 0 n ( C n k f ( n − k + 1 ) g ( k ) ) + ∑ k = 0 n ( C n k f ( n − k ) g ( k + 1 ) ) = C n 0 f ( n + 1 ) ( x ) g ( 0 ) ( x ) + ∑ k = 1 n [ C n k f ( ( n + 1 ) − k ) ( x ) g ( k ) ( x ) ] + ∑ k = 1 n [ C n k − 1 f ( ( n + 1 ) − k ) ( x ) g ( k ) ( x ) ] + C n n f ( 0 ) ( x ) g ( n + 1 ) ( x ) \begin{array}{l} &\left ( f\left ( x \right ) g\left ( x \right ) \right )^{\left ( n+1 \right ) } \\ = & \left [ \left (f\left ( x \right ) g\left ( x \right ) \right )^{\left ( n \right ) } \right ]^{\prime } \\ = &\left [ \sum_{k=0}^{n} \left ( C_{k}^{n} f^{\left ( n -k \right ) }g^{\left ( k \right ) } \right ) \right ]^{\prime } \\ = & \sum_{k=0}^{n}\left ( C_{n}^{k}f^{\left ( n-k+1 \right ) } g^{\left ( k \right ) } \right ) + \sum_{k=0}^{n}\left ( C_{n}^{k}f^{\left ( n -k \right ) } g^{\left ( k+1 \right ) } \right ) \\ =&C_{n}^{0} f^{\left ( n+1 \right ) }\left ( x \right ) g^{\left ( 0 \right ) }\left ( x \right )+\sum_{k=1}^{n}\left [ C_{n}^{k} f^{\left ( \left ( n+1 \right )-k \right ) }\left ( x \right ) g^{\left ( k \right ) }\left ( x \right ) \right ]+\sum_{k=1}^{n}\left [ C_{n}^{k-1} f^{\left ( \left ( n+1 \right )-k \right ) }\left ( x \right ) g^{\left ( k \right ) }\left ( x \right ) \right ] + C_{n}^{n} f^{\left ( 0 \right ) }\left ( x \right ) g^{\left ( n+1\right ) }\left ( x \right ) \\ \end{array} ====(f(x)g(x))(n+1)[(f(x)g(x))(n)][k=0n(Cknf(nk)g(k))]k=0n(Cnkf(nk+1)g(k))+k=0n(Cnkf(nk)g(k+1))Cn0f(n+1)(x)g(0)(x)+k=1n[Cnkf((n+1)k)(x)g(k)(x)]+k=1n[Cnk1f((n+1)k)(x)g(k)(x)]+Cnnf(0)(x)g(n+1)(x)
根据组合数公式 C n + 1 k = C n k − 1 + C n k C_{n+1}^{k}=C_{n}^{k-1}+C_{n}^{k} Cn+1k=Cnk1+Cnk,上述多项式可以合并为 ∑ k = 0 n + 1 ( C n + 1 k f ( ( n + 1 ) − k ) g ( k ) ) \sum_{k=0}^{n+1} \left ( C_{n+1}^{k} f^{\left (\left ( n+1\right )-k \right ) }g^{\left ( k \right ) } \right ) k=0n+1(Cn+1kf((n+1)k)g(k)),与Lebniz公式一致。

高阶微分

定义3.2 高阶微分

y = f ( x ) y=f\left ( x \right ) y=f(x)的前 n − 1 n-1 n1阶微分均存在,且第 n − 1 n-1 n1阶微分可微,则将 f ( x ) f\left ( x \right ) f(x)的第 n − 1 n-1 n1阶微分的微分产物称为 f ( x ) f\left ( x \right ) f(x) n n n阶微分,一阶微分与一阶导数在一元函数中存在形式不变性,高阶微分一般不符合形式不变性。

  • 15
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值