积分学<2>——换元积分法和分部积分法

换元积分法和分部积分法

换元积分法

定理2.1 第一类换元积分法

f ( x ) = f ~ ( x ) g ′ ( x ) f\left ( x \right )=\tilde{f}\left ( x \right )g^{\prime } \left ( x \right ) f(x)=f~(x)g(x),且 ∫ f ~ ( u ) d u = F ( u ) + C \int \tilde{f}\left ( u \right )du=F\left ( u \right )+C f~(u)du=F(u)+C,则 ∫ f ( x ) d x = F ( g ( x ) ) + C \int f\left ( x \right )dx=F\left ( g\left ( x \right ) \right )+C f(x)dx=F(g(x))+C

[ F ( g ( x ) ) ] ′ = F ′ ( g ( x ) ) ⋅ g ′ ( x ) = f ~ ( g ( x ) ) g ′ ( x ) = f ( x ) \left [ F\left ( g\left ( x \right ) \right ) \right ]^{\prime }=F^{\prime } \left ( g\left ( x \right ) \right ) \cdot g^{\prime }\left ( x \right )=\tilde{f}\left ( g\left ( x \right ) \right )g^{\prime } \left ( x \right )=f\left ( x \right ) [F(g(x))]=F(g(x))g(x)=f~(g(x))g(x)=f(x)

定理2.2 第二类换元法

x = φ ( t ) x=\varphi \left ( t \right ) x=φ(t),且反函数 φ − 1 ( x ) = t \varphi ^{-1}\left ( x \right ) =t φ1(x)=t存在,则 ∫ f ( x ) d x = ∫ f ( φ ( t ) ) φ ′ ( t ) d t = F ~ ( φ − 1 ( x ) ) + C \int f\left ( x \right )dx=\int f\left ( \varphi \left ( t \right ) \right )\varphi^{\prime } \left ( t \right )dt =\tilde{F}\left ( \varphi ^{-1}\left ( x \right ) \right )+C f(x)dx=f(φ(t))φ(t)dt=F~(φ1(x))+C

[ F ~ ( φ − 1 ( x ) ) ] ′ = F ~ ′ ( φ − 1 ( x ) ) φ ′ ( t ) = f ( φ ( t ) ) φ ′ ( t ) φ ′ ( t ) = f ( φ ( t ) ) = f ( x ) \left [ \tilde{F}\left ( \varphi ^{-1}\left ( x \right ) \right ) \right ] ^{\prime }=\frac{\tilde{F}^{\prime } \left ( \varphi ^{-1} \left ( x\right ) \right ) } {\varphi^{\prime } \left ( t \right ) }=\frac{f\left ( \varphi \left ( t \right ) \right )\varphi ^{\prime }\left ( t \right ) }{\varphi ^{\prime } \left ( t \right ) }=f\left ( \varphi \left ( t \right ) \right )=f\left ( x \right ) [F~(φ1(x))]=φ(t)F~(φ1(x))=φ(t)f(φ(t))φ(t)=f(φ(t))=f(x)

分部积分法

定理2.3 分部积分法

f ( x ) = u ( x ) v ( x ) f\left ( x \right ) =u\left ( x \right )v\left ( x \right ) f(x)=u(x)v(x), d f ( x ) = u ( x ) d v ( x ) + v ( x ) d u ( x ) df\left ( x \right )=u\left ( x \right )dv\left ( x \right ) +v\left ( x \right ) du\left ( x \right ) df(x)=u(x)dv(x)+v(x)du(x),则有 ∫ u ( x ) d v ( x ) = u ( x ) v ( x ) − ∫ v ( x ) d u ( x ) \int u\left ( x \right )dv\left ( x \right ) =u\left ( x \right )v\left ( x \right )-\int v\left ( x \right )du\left ( x \right ) u(x)dv(x)=u(x)v(x)v(x)du(x)

  • 8
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值