11.预测算法---时间序列分析

时间序列也称动态序列,是指将某种现象的指标数值按照时间顺序排列而成的数值序列。时间序列分析大致可分成三大部分,分别是描述过去、分析规律和预测未来,三种模型:季节分解、指数平滑方法和ARIMA模型,并将结合Spss软件对时间序列数据进行建模。

1.引入

(1)定义

对同一对象在不同时间连续观察取得的数据,比如每年的GDP。由时间要素如年,月日,小时,分钟,和数值要素共同组成。

(2)分类

  • 时期时间序列 :一定时期内发展的结果 历年来的GDP
  • 时点时间序列 : 一定时点上的瞬间水平,每隔一个小时测的温度数据

区分:时期序列可加,相加结果表示在更长一段时间内的总量,而时点序列不可加

(3)时间序列分解变化规律

  • 长期趋势(T),在相当长的一段时间内,受到长期趋势影响因素的影响,表现出持续上升或持续下降的趋势。

  • 季节趋势(S)由于季节转变使得指标值发生周期性变动
    季节是广义是,一般以月,季,周未时间序列,不能以年为单位,例如雪糕和棉衣

    数据来源—百度指数 http://index.baidu.com/v2/index.html#/
    在这里插入图片描述

  • 循环变动(C):区分上面,季节变动,周期不同,通常以若干年为周期

在曲线图上表现为波浪式的周期变动,这种周期变动的特征变现为增加和减少交替出现,但并不具有严格的周期性持续变动,最典型的周期案例就是市场经济的商业周期和整个国家的经济周期。

  • 不规则变动(I):某些随机因素导致的数值变化,因素的作用是不可预知和没有规律的,可以看成是因为多种偶然因素对时间序列造成的影响,在回归中被称作扰动项

(4)叠加模型和乘积模型

四种规律组合的不确定性也造成了时间序列的多样性。
变动和指标数值最终变动的关系可能是叠加关系,也可能是乘积关系。

  • 如果四种变动是相互独立的关系,是叠加模型
  • 如果四种变动有相互影响关系,应该使用乘积模型。

最终变动=长期趋势变动+季节变动+循环变动+不规则变动, 或者是乘。

在具体的时间序列上,如果随着时间的推移,序列的季节波动变得越来越大,则反应各种变动之间的关系发生变化,建议使用乘积模型,通过时间序列图的波动保持恒定,可以直接用叠加模型,当然,如果不存在季节波动,则两种都可以

(5)使用时间序列分解的条件

数据有周期性,才可以使用时间序列分解,且对月份数据和季度数据 才可以,参考上面的季节变动趋势, 如果是年份数据就不行。

(6)用spss建立时间序列模型

1.缺失值处理
缺失值在时间序列的开头或者尾部,可以采用直接删除的方法,通过缺失值在数列的中间,则不能删除,采用插值方法。其中插值方法有序列平均值,临近点的平均值,中位数(可以用多个数据),线性插值(用相邻平均值)临近点的线性趋势
在这里插入图片描述2. 定义时间变量
确定个案的类型和开始时间便于分析和作图。
在这里插入图片描述
3. 画时间序列图和分解
先画一个完整的趋势图来看季节变化趋势,如果变化稳定就用加法模型,不稳定就用乘法模型。
在这里插入图片描述
对表和图要进行一定的解释,可以看出变化幅度差不多,考虑采用加法模型,下面再进行季节性分解。
在这里插入图片描述

(7)加法模型和乘法模型

四个参数分别表示的含义
I 不规则变动
T+C+I 季节性调整后系列
S 季节性调整因子
T+C 趋势循环成分

对于加法模型,得到的季节因子表示每个季度相比于全年平均水平多或者少。对销量数据进行加法分解得到的季节因子加起来是为1。
而对于乘法模型,得到的乘法因子的积为1,表是该季度的季节因子 是平均销量的多少倍。
在这里插入图片描述

(8)季节分解后如何去预测呢

得到了四个趋势对应的趋势图,就可以考虑采用合适的模型去拟合,进而预测得到后面的数据。
为什么不直接预测,而是要分解呢,因为分解后的曲线可以更好拟合。画出序列图,分解可以对于单独某个元素进行建模

(9)时间序列分解的总结

序列图,判断变动充分,
序列分解,周期性,长期趋势,季节变动,循环变动
建立时间分析模型
预测未来指标数值

2.建立时间序列分析模型

(1)专家建模器

spss中有专家建模器 ,包括指数平滑法模型,ARIMA模型,可以自动检测离群值。
合适条件下利用平方,自然对数转换对模型变量进行转换。

(2)简单指数平滑法 ARIMA(0,1,1)

1.每一个平滑后的数据都是从过去的数据加权求和后得到,越接近当期的数据,权值越大,说明距离当期越接近的数据,对当期的影响也越大,反之,越早期的数据,对单期的影响越小
在这里插入图片描述

2.适用于不含趋势和季节模型
3. 其中平滑系数α选取原则:
起伏变化,长期趋于稳定,比较小(0.02-0.05)
迅速变化倾向,比较大)(0.3-0.5)
变化缓慢,较小(0.1-0.4)
4.特点: 用这公式只可以预测一期,后面预测结果都是一样
在时间预测模型中会出现可能会出现这样的现象:预测到某个值后,后面的数值和前面的一样。

(3)霍特线性趋势模型 (ARIMA(0,2,2))

1.用在含有线性趋势和不含有季节趋势的条件下
相比于上面的多了趋势平滑参数和对应方程才可以得到预测方程。

其中布朗线性趋势模型是水平和趋势平滑参数相等的特殊情况。

(4)阻尼趋势模型(ARIMA(1,1,2))

1.适合用在线性趋势逐渐减弱且不含有季节充分的时间序列上。在霍特线性趋势模型上进行修正,因为霍特线性趋势模型倾向于对未来预测值过高,特别是对于长期预测。
在这里插入图片描述
所以在这里引入了阻尼效应,用来缓解较高的线性趋势,这里有三个参数水平,趋势,加阻尼,阻尼为1时就是霍特线性趋势。阻尼参数越小,阻尼越大。

(5)简单季节性 SARIMA(0,1,1)X(0,1,2)s

适用在含有稳定的季节成分,不含趋势。
seasonal 季节性,在水平平滑的基础上季节平滑。
在这里插入图片描述

(6)温特加法模型

含有线性趋势和稳定的季节成分,较上面多了趋势平滑方程
在这里插入图片描述

(7)温特乘法

含有线性趋势和不稳定的季节充分。不稳定就是变化有多有少。
在这里插入图片描述
言之有理选择就可以。系数不显著也没有关系对于预测性回归。解释性回归需要系数的显著。预测型不需要,其中要注意比较预测效果的好坏。

3. 关于arima模型的一些知识点

一元时间序列分析模型

(1) 时间的平稳性

在这里插入图片描述在这里插入图片描述
严格平稳要求太高,因此在时间序列中提到的平稳没有特殊说明默认为弱平稳。
在这里插入图片描述
协方差平稳,弱平稳(默认)
时间序列中的白噪声序列(扰动项),一般都是被假设成扰动项序列。

(2)差分方程

把某个时间序列变量表示为改变了的滞后项,时间和其他变量的函数,这样一个函数方程称作差分方程。
差分方程的齐次部分:只包含该变量自身和它的滞后项的式子。
差分方程的齐次解帮助我们确认时间序列是否平稳
在这里插入图片描述
在这里插入图片描述

(3)滞后算子

在这里插入图片描述

(4)AR(p) 模型

在这里插入图片描述
平稳的条件
在这里插入图片描述
在这里插入图片描述

(5)MA(q)模型

在这里插入图片描述
在这里插入图片描述
从上面的计算步骤可以看出:我们可以将1阶移动平均模型转换为无穷阶的自回归模型,这一性质称为移动平均模型的可逆性;类似的,我们在某些条件下(可逆性条件)也可以将MA(q)模型也转换为无穷阶的自回归过程。
一般地,任何经济变量的时间序列都可以自回归过程来描述。但在模型分析的实践中,为简化估计参数的工作量,我们当然希望模型当中的参数尽可能地少。于是便有了引进移动平均过程MA(q)的必要。

(6)ARMA(p,q)

自回归移动平均模型:设法把自回归中AR和移动平均过程MA结合起来,共同模拟产生既有时间序列样本数据的那个随机模拟的过程,平稳性只和自回归AR(p)部分有关
在这里插入图片描述
检查时间序列是否平稳
假设检验方法   ADF ,KPSS,PP检验

(7)ACF自相关系数

在这里插入图片描述

(8)PACF偏自相关系数

用来衡量开始和末尾变量剔除中间变量对相关性的影响。
在这里插入图片描述

(9)模型的识别

在这里插入图片描述
在这里插入图片描述
正确识别ARMA模型的阶数存在一定难度。

(10)ARMA模型的选择

模型选择,加入参数越多,模型拟合效果越好,但却以提高模型复杂程度为代价,且加入还可能有过拟合问题。
因此,再模型复杂度和模型对数据的解释能力之间寻找平衡。
在这里插入图片描述
检验模型是否完全识别
Q检验看残差是否为白噪声,如果是则识别完全,不是就没有识别完全、

ARIMA(p,d,q)模型

差分自回归移动平均模型,其中差分可以使得时间序列平稳
为什么要用滞后算子来表示,使得表示更加方便。其中d表示差分次数,可以使得序列平稳
在这里插入图片描述

季节的SARIMA模型

ARIMA模型能够对广泛的季节数据进行建模。季节ARIMA模型是通过在ARIMA模型中包含额外的季节性项而生成
在这里插入图片描述

总结建模思路

(1)处理数据的缺失值问题、生成时间变量并画出时间序列图;
(2)数据是否为季度数据或者月份数据(至少有两个完整的周期,即两年),如果是的话则要观察图形中是否存在季节性波动。
(3)根据时间序列图大致判断数据是否为平稳序列(数据围绕着均值上下波动,无趋势和季节性)
(4)打开Spss,分析‐‐时间序列预测—创建传统模型
Spss专家建模器得出的最优的模型类型。
(5)如果最后的结果是ARIMA(p,0,q)模型,那么我们就可以画出时间序列的样本
ACF和PACF图形进行分析;如果得到的是ARIMA(p,1,q)模型,我们可以先对数据进行1阶差分后再用ACF和PACF图形分析;如果得到的结果与季节性相关,那么我们可以考虑使用时间序列分解。

实例1 销量数据预测

在这里插入图片描述季度数据,不平稳,有向上的趋势;
在这里插入图片描述
Spss的专家建模给出的最合适的模型是温特加法模型;意味着原时间序列数据含有线性趋势和稳定的季节成分,我们可以使用加法时间序列分解;对未来两年的销售数据
进行预测。
在这里插入图片描述
预测值和拟合值是不相同的,预测值是将样本外年份的数据带入模型计算得到的,而拟合值是将样本的年份重新带入模型计算得到的。
这里保留残差的ACF和PACF图形可以帮助我们判断残差是否为白噪声,即该时间序列是否能被模型识别完全。
在这里插入图片描述
一般比较两个模型的好坏,我们可以使用平稳的R方或者标准化
BIC(BIC准则),这两个指标既考虑了拟合的好坏,又考虑了模型的复杂度;
R方可用来反映线性模型拟合的好坏,越接近于1拟合的越准确。
最后得到结果
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

预测两要:
一要结合背景;
二要合理假设。
预测两不要:
不要硬套模型;
不要不做解释。

自回归条件异方差模型-适用于波动性聚集,但是长期来看数据平稳。

短期来看方差不稳定,条件异方差,从传统的ARMA模型识别不出来,需要用ARCH模型。适用于现代高频金融时间序列中。用于股票预测。
在这里插入图片描述
ARCH模型是在ARMA模型的基础上提出来的,两者的区别在于扰动项的设置不同,在ARMA
模型中扰动项是最简单的白噪声序列。对于波动性聚集存在异方差的问题的解决。处理就是在扰动项会有区别。
在这里插入图片描述

  • 0
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值