Multi-View Stereo for Community Photo Collections

全局视图选择介绍

在SFM阶段计算的3D点(共有特征)是一个很好的指示,对于给定的视图R去找到与之相关的视图V,因为3D点源自于三角化,而三角化又来自于特征的匹配,那么如果两个视图存在匹配了,直接就说明两个视图之间存在重叠关系。

但是,两个视图之间存在共有的特征不能保证好的稠密重建的结果,两个视图之间存在很多的匹配的时候,往往的重叠度很高,这个时候一般两张图之间基线很小,基线小计算的视差误差就会偏大。此外,特征匹配一般是存在尺度不变性的,也就是大分辨率的视图可能和小分辨率的视图存在匹配,但是在稠密重建中,最好两张视图分辨率基本一样是最好的。因此作者给出了计算得分的方式,去评价两张视图去计算MVS的好坏。

如公式1所示,其中Fx是可以被视图X观测到的共有的特征,wN(f)是用于评估两个视图之间重叠度是否合适的函数,ws(f)是两个视图分辨率是否合适的函数。

其中,其中α是视图Vi和Vj与对应的共同的特征点f (3D点)的夹角,也就是两个视图的相机中心与3D点坐标求得的向量,计算反余弦得到的夹角。其中αmax在实验中设置为10度。二次函数用于抵消随着角度减小而出现的特征数量增加的趋势。

为了估计在特征点 f 附近,三维数据 V 的空间采样率,我们找一个以 f 为中心的球,使得它在图像 V 上投影的直径正好等于一像素的间距。这个球的实际三维直径 sV(f) 就代表了在该区域的采样间距(或说空间分辨率)。其中。在实际的计算中,sR(f)等于对应的图像的焦距F除以对应的3D点的深度。如公式所示,对应的分辨率的比值在1-2之间时,得分是最高的1,也就是说两张图像的分辨率越相近,得分越高。

具体的代码可以参考openMVS,如链接所示:

https://github.com/cdcseacave/openMVS/blob/e134eb4430b73cd14077f73a0ace297b61f942b6/libs/MVS/Scene.cpp#L835

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值